Effective Lower Bounds on the Matrix Rank and Their Applications

We propose an efficiently verifiable lower bound on the rank of a sparse fully indecomposable square matrix that contains two non-zero entries in each row and each column. The rank of this matrix is equal to its order or differs from it by one. Bases of a special type are constructed in the spaces o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Programming and computer software 2023-10, Vol.49 (5), p.441-447
Hauptverfasser: Zverkov, O. A., Seliverstov, A. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 447
container_issue 5
container_start_page 441
container_title Programming and computer software
container_volume 49
creator Zverkov, O. A.
Seliverstov, A. V.
description We propose an efficiently verifiable lower bound on the rank of a sparse fully indecomposable square matrix that contains two non-zero entries in each row and each column. The rank of this matrix is equal to its order or differs from it by one. Bases of a special type are constructed in the spaces of quadratic forms in a fixed number of variables. The existence of these bases allows us to substantiate a heuristic algorithm for recognizing whether a given affine subspace passes through a vertex of a multidimensional unit cube. In the worst case, the algorithm may output a computation denial warning; however, for the general subspace of sufficiently small dimension, it correctly rejects the input. The algorithm is implemented in Python. The running time of its implementation is estimated in the process of testing.
doi_str_mv 10.1134/S0361768823020160
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918495878</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918495878</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-22a8f3bf5fded06cb5ee4fb7b709a14ea07c92c6b3325f9a12b3b303430626a43</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wF3A9ejNYzKZnbW0KlQEreshySR2ak3GZOrj3ztDBRfi5l645zvnwkHolMA5IYxfPAITpBBSUgYUiIA9NOqnzBgVZB-NBjkb9EN0lNIagABwPkKXM-es6Zp3ixfhw0Z8Fba-Tjh43K0svlNdbD7xg_IvWPkaL1e2iXjStpvGqK4JPh2jA6c2yZ787DF6ms-W05tscX99O50sMkOF7DJKlXRMu9zVtgZhdG4td7rQBZSKcKugMCU1QjNGc9efqGaaAeMMBBWKszE62-W2MbxtbeqqddhG37-saEkkL3NZyJ4iO8rEkFK0rmpj86riV0WgGoqq_hTVe-jOk3rWP9v4m_y_6Rvtxmii</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918495878</pqid></control><display><type>article</type><title>Effective Lower Bounds on the Matrix Rank and Their Applications</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Zverkov, O. A. ; Seliverstov, A. V.</creator><creatorcontrib>Zverkov, O. A. ; Seliverstov, A. V.</creatorcontrib><description>We propose an efficiently verifiable lower bound on the rank of a sparse fully indecomposable square matrix that contains two non-zero entries in each row and each column. The rank of this matrix is equal to its order or differs from it by one. Bases of a special type are constructed in the spaces of quadratic forms in a fixed number of variables. The existence of these bases allows us to substantiate a heuristic algorithm for recognizing whether a given affine subspace passes through a vertex of a multidimensional unit cube. In the worst case, the algorithm may output a computation denial warning; however, for the general subspace of sufficiently small dimension, it correctly rejects the input. The algorithm is implemented in Python. The running time of its implementation is estimated in the process of testing.</description><identifier>ISSN: 0361-7688</identifier><identifier>EISSN: 1608-3261</identifier><identifier>DOI: 10.1134/S0361768823020160</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algebra ; Algorithms ; Artificial Intelligence ; Computer Science ; Heuristic methods ; Linear equations ; Lower bounds ; Matrices (mathematics) ; Operating Systems ; Polynomials ; Python ; Quadratic forms ; Software Engineering ; Software Engineering/Programming and Operating Systems</subject><ispartof>Programming and computer software, 2023-10, Vol.49 (5), p.441-447</ispartof><rights>Pleiades Publishing, Ltd. 2023. ISSN 0361-7688, Programming and Computer Software, 2023, Vol. 49, No. 5, pp. 441–447. © Pleiades Publishing, Ltd., 2023. Russian Text © The Author(s), 2023, published in Programmirovanie, 2023, Vol. 49, No. 5.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-22a8f3bf5fded06cb5ee4fb7b709a14ea07c92c6b3325f9a12b3b303430626a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0361768823020160$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918495878?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,778,782,21375,27911,27912,33731,41475,42544,43792,51306,64370,64374,72226</link.rule.ids></links><search><creatorcontrib>Zverkov, O. A.</creatorcontrib><creatorcontrib>Seliverstov, A. V.</creatorcontrib><title>Effective Lower Bounds on the Matrix Rank and Their Applications</title><title>Programming and computer software</title><addtitle>Program Comput Soft</addtitle><description>We propose an efficiently verifiable lower bound on the rank of a sparse fully indecomposable square matrix that contains two non-zero entries in each row and each column. The rank of this matrix is equal to its order or differs from it by one. Bases of a special type are constructed in the spaces of quadratic forms in a fixed number of variables. The existence of these bases allows us to substantiate a heuristic algorithm for recognizing whether a given affine subspace passes through a vertex of a multidimensional unit cube. In the worst case, the algorithm may output a computation denial warning; however, for the general subspace of sufficiently small dimension, it correctly rejects the input. The algorithm is implemented in Python. The running time of its implementation is estimated in the process of testing.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Computer Science</subject><subject>Heuristic methods</subject><subject>Linear equations</subject><subject>Lower bounds</subject><subject>Matrices (mathematics)</subject><subject>Operating Systems</subject><subject>Polynomials</subject><subject>Python</subject><subject>Quadratic forms</subject><subject>Software Engineering</subject><subject>Software Engineering/Programming and Operating Systems</subject><issn>0361-7688</issn><issn>1608-3261</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtLAzEUhYMoWKs_wF3A9ejNYzKZnbW0KlQEreshySR2ak3GZOrj3ztDBRfi5l645zvnwkHolMA5IYxfPAITpBBSUgYUiIA9NOqnzBgVZB-NBjkb9EN0lNIagABwPkKXM-es6Zp3ixfhw0Z8Fba-Tjh43K0svlNdbD7xg_IvWPkaL1e2iXjStpvGqK4JPh2jA6c2yZ787DF6ms-W05tscX99O50sMkOF7DJKlXRMu9zVtgZhdG4td7rQBZSKcKugMCU1QjNGc9efqGaaAeMMBBWKszE62-W2MbxtbeqqddhG37-saEkkL3NZyJ4iO8rEkFK0rmpj86riV0WgGoqq_hTVe-jOk3rWP9v4m_y_6Rvtxmii</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Zverkov, O. A.</creator><creator>Seliverstov, A. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20231001</creationdate><title>Effective Lower Bounds on the Matrix Rank and Their Applications</title><author>Zverkov, O. A. ; Seliverstov, A. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-22a8f3bf5fded06cb5ee4fb7b709a14ea07c92c6b3325f9a12b3b303430626a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Computer Science</topic><topic>Heuristic methods</topic><topic>Linear equations</topic><topic>Lower bounds</topic><topic>Matrices (mathematics)</topic><topic>Operating Systems</topic><topic>Polynomials</topic><topic>Python</topic><topic>Quadratic forms</topic><topic>Software Engineering</topic><topic>Software Engineering/Programming and Operating Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zverkov, O. A.</creatorcontrib><creatorcontrib>Seliverstov, A. V.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Programming and computer software</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zverkov, O. A.</au><au>Seliverstov, A. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effective Lower Bounds on the Matrix Rank and Their Applications</atitle><jtitle>Programming and computer software</jtitle><stitle>Program Comput Soft</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>49</volume><issue>5</issue><spage>441</spage><epage>447</epage><pages>441-447</pages><issn>0361-7688</issn><eissn>1608-3261</eissn><abstract>We propose an efficiently verifiable lower bound on the rank of a sparse fully indecomposable square matrix that contains two non-zero entries in each row and each column. The rank of this matrix is equal to its order or differs from it by one. Bases of a special type are constructed in the spaces of quadratic forms in a fixed number of variables. The existence of these bases allows us to substantiate a heuristic algorithm for recognizing whether a given affine subspace passes through a vertex of a multidimensional unit cube. In the worst case, the algorithm may output a computation denial warning; however, for the general subspace of sufficiently small dimension, it correctly rejects the input. The algorithm is implemented in Python. The running time of its implementation is estimated in the process of testing.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0361768823020160</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0361-7688
ispartof Programming and computer software, 2023-10, Vol.49 (5), p.441-447
issn 0361-7688
1608-3261
language eng
recordid cdi_proquest_journals_2918495878
source Springer Nature - Complete Springer Journals; ProQuest Central UK/Ireland; ProQuest Central
subjects Algebra
Algorithms
Artificial Intelligence
Computer Science
Heuristic methods
Linear equations
Lower bounds
Matrices (mathematics)
Operating Systems
Polynomials
Python
Quadratic forms
Software Engineering
Software Engineering/Programming and Operating Systems
title Effective Lower Bounds on the Matrix Rank and Their Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T12%3A52%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effective%20Lower%20Bounds%20on%20the%20Matrix%20Rank%20and%20Their%20Applications&rft.jtitle=Programming%20and%20computer%20software&rft.au=Zverkov,%20O.%20A.&rft.date=2023-10-01&rft.volume=49&rft.issue=5&rft.spage=441&rft.epage=447&rft.pages=441-447&rft.issn=0361-7688&rft.eissn=1608-3261&rft_id=info:doi/10.1134/S0361768823020160&rft_dat=%3Cproquest_cross%3E2918495878%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918495878&rft_id=info:pmid/&rfr_iscdi=true