A note on hybridization process applied on transformed double step size model

We introduce a hybrid gradient model for solving unconstrained optimization problems based on one specific accelerated gradient iteration. Having applied a three term hybridization relation on transformed accelerated double step size model, we develop an efficient hybrid accelerated scheme. We deter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical algorithms 2020-10, Vol.85 (2), p.449-465
Hauptverfasser: Petrović, Milena J., Rakočević, Vladimir, Valjarević, Dragana, Ilić, Dejan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 465
container_issue 2
container_start_page 449
container_title Numerical algorithms
container_volume 85
creator Petrović, Milena J.
Rakočević, Vladimir
Valjarević, Dragana
Ilić, Dejan
description We introduce a hybrid gradient model for solving unconstrained optimization problems based on one specific accelerated gradient iteration. Having applied a three term hybridization relation on transformed accelerated double step size model, we develop an efficient hybrid accelerated scheme. We determine an iterative step size variable using Backtracking line search technique in which we take an optimally calculated starting value for the posed method. In convergence analysis, we show that the proposed method is at least linearly convergent on the sets of uniformly convex functions and strictly convex quadratic functions. Numerical computations confirm a significant improvement compared with some relevant hybrid and accelerated gradient processes. More precisely, subject to the number of iterations, the CPU time metric and the number of evaluations of the objective function, defined process outperforms comparative schemes multiple times.
doi_str_mv 10.1007/s11075-019-00821-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918493618</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918493618</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-36e6b0c65708a2fde1cd57166ccd910d71ef0c19508a14980dc9a6dfcb5594c03</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wisTbMJPVrWVW8pCI2sLYc24FUaRzsdNF-PS5BYsdqZjT33hkdQq4RbhFA3CVEEIwCKgogS6TyhMyQiZKqkrPT3AMKipWS5-QipQ1AtpViRl6WRR9GX4S--NzXsXXtwYxtnoYYrE-pMMPQtd4dBWM0fWpC3ObRhV3d-SKNfihSe_DFNjjfXZKzxnTJX_3WOXl_uH9bPdH16-PzarmmtkI10op7XoPlTIA0ZeM8WscEcm6tUwhOoG_AomJ5jQslwVlluGtszZhaWKjm5GbKzV9-7Xwa9SbsYp9P6lKhXKiKo8yqclLZGFKKvtFDbLcm7jWCPmLTEzadsekfbPpoqiZTyuL-w8e_6H9c38g0cC4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918493618</pqid></control><display><type>article</type><title>A note on hybridization process applied on transformed double step size model</title><source>SpringerLink Journals</source><creator>Petrović, Milena J. ; Rakočević, Vladimir ; Valjarević, Dragana ; Ilić, Dejan</creator><creatorcontrib>Petrović, Milena J. ; Rakočević, Vladimir ; Valjarević, Dragana ; Ilić, Dejan</creatorcontrib><description>We introduce a hybrid gradient model for solving unconstrained optimization problems based on one specific accelerated gradient iteration. Having applied a three term hybridization relation on transformed accelerated double step size model, we develop an efficient hybrid accelerated scheme. We determine an iterative step size variable using Backtracking line search technique in which we take an optimally calculated starting value for the posed method. In convergence analysis, we show that the proposed method is at least linearly convergent on the sets of uniformly convex functions and strictly convex quadratic functions. Numerical computations confirm a significant improvement compared with some relevant hybrid and accelerated gradient processes. More precisely, subject to the number of iterations, the CPU time metric and the number of evaluations of the objective function, defined process outperforms comparative schemes multiple times.</description><identifier>ISSN: 1017-1398</identifier><identifier>EISSN: 1572-9265</identifier><identifier>DOI: 10.1007/s11075-019-00821-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Algorithms ; Approximation ; Computer Science ; Convergence ; Hybridization ; Iterative methods ; Mathematical analysis ; Methods ; Numeric Computing ; Numerical Analysis ; Optimization ; Original Paper ; Quadratic equations ; Theory of Computation</subject><ispartof>Numerical algorithms, 2020-10, Vol.85 (2), p.449-465</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-36e6b0c65708a2fde1cd57166ccd910d71ef0c19508a14980dc9a6dfcb5594c03</citedby><cites>FETCH-LOGICAL-c319t-36e6b0c65708a2fde1cd57166ccd910d71ef0c19508a14980dc9a6dfcb5594c03</cites><orcidid>0000-0002-5073-143X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11075-019-00821-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11075-019-00821-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Petrović, Milena J.</creatorcontrib><creatorcontrib>Rakočević, Vladimir</creatorcontrib><creatorcontrib>Valjarević, Dragana</creatorcontrib><creatorcontrib>Ilić, Dejan</creatorcontrib><title>A note on hybridization process applied on transformed double step size model</title><title>Numerical algorithms</title><addtitle>Numer Algor</addtitle><description>We introduce a hybrid gradient model for solving unconstrained optimization problems based on one specific accelerated gradient iteration. Having applied a three term hybridization relation on transformed accelerated double step size model, we develop an efficient hybrid accelerated scheme. We determine an iterative step size variable using Backtracking line search technique in which we take an optimally calculated starting value for the posed method. In convergence analysis, we show that the proposed method is at least linearly convergent on the sets of uniformly convex functions and strictly convex quadratic functions. Numerical computations confirm a significant improvement compared with some relevant hybrid and accelerated gradient processes. More precisely, subject to the number of iterations, the CPU time metric and the number of evaluations of the objective function, defined process outperforms comparative schemes multiple times.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Approximation</subject><subject>Computer Science</subject><subject>Convergence</subject><subject>Hybridization</subject><subject>Iterative methods</subject><subject>Mathematical analysis</subject><subject>Methods</subject><subject>Numeric Computing</subject><subject>Numerical Analysis</subject><subject>Optimization</subject><subject>Original Paper</subject><subject>Quadratic equations</subject><subject>Theory of Computation</subject><issn>1017-1398</issn><issn>1572-9265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kMtOwzAQRS0EEqXwA6wisTbMJPVrWVW8pCI2sLYc24FUaRzsdNF-PS5BYsdqZjT33hkdQq4RbhFA3CVEEIwCKgogS6TyhMyQiZKqkrPT3AMKipWS5-QipQ1AtpViRl6WRR9GX4S--NzXsXXtwYxtnoYYrE-pMMPQtd4dBWM0fWpC3ObRhV3d-SKNfihSe_DFNjjfXZKzxnTJX_3WOXl_uH9bPdH16-PzarmmtkI10op7XoPlTIA0ZeM8WscEcm6tUwhOoG_AomJ5jQslwVlluGtszZhaWKjm5GbKzV9-7Xwa9SbsYp9P6lKhXKiKo8yqclLZGFKKvtFDbLcm7jWCPmLTEzadsekfbPpoqiZTyuL-w8e_6H9c38g0cC4</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Petrović, Milena J.</creator><creator>Rakočević, Vladimir</creator><creator>Valjarević, Dragana</creator><creator>Ilić, Dejan</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-5073-143X</orcidid></search><sort><creationdate>20201001</creationdate><title>A note on hybridization process applied on transformed double step size model</title><author>Petrović, Milena J. ; Rakočević, Vladimir ; Valjarević, Dragana ; Ilić, Dejan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-36e6b0c65708a2fde1cd57166ccd910d71ef0c19508a14980dc9a6dfcb5594c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Approximation</topic><topic>Computer Science</topic><topic>Convergence</topic><topic>Hybridization</topic><topic>Iterative methods</topic><topic>Mathematical analysis</topic><topic>Methods</topic><topic>Numeric Computing</topic><topic>Numerical Analysis</topic><topic>Optimization</topic><topic>Original Paper</topic><topic>Quadratic equations</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Petrović, Milena J.</creatorcontrib><creatorcontrib>Rakočević, Vladimir</creatorcontrib><creatorcontrib>Valjarević, Dragana</creatorcontrib><creatorcontrib>Ilić, Dejan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Numerical algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Petrović, Milena J.</au><au>Rakočević, Vladimir</au><au>Valjarević, Dragana</au><au>Ilić, Dejan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A note on hybridization process applied on transformed double step size model</atitle><jtitle>Numerical algorithms</jtitle><stitle>Numer Algor</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>85</volume><issue>2</issue><spage>449</spage><epage>465</epage><pages>449-465</pages><issn>1017-1398</issn><eissn>1572-9265</eissn><abstract>We introduce a hybrid gradient model for solving unconstrained optimization problems based on one specific accelerated gradient iteration. Having applied a three term hybridization relation on transformed accelerated double step size model, we develop an efficient hybrid accelerated scheme. We determine an iterative step size variable using Backtracking line search technique in which we take an optimally calculated starting value for the posed method. In convergence analysis, we show that the proposed method is at least linearly convergent on the sets of uniformly convex functions and strictly convex quadratic functions. Numerical computations confirm a significant improvement compared with some relevant hybrid and accelerated gradient processes. More precisely, subject to the number of iterations, the CPU time metric and the number of evaluations of the objective function, defined process outperforms comparative schemes multiple times.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11075-019-00821-8</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-5073-143X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1017-1398
ispartof Numerical algorithms, 2020-10, Vol.85 (2), p.449-465
issn 1017-1398
1572-9265
language eng
recordid cdi_proquest_journals_2918493618
source SpringerLink Journals
subjects Algebra
Algorithms
Approximation
Computer Science
Convergence
Hybridization
Iterative methods
Mathematical analysis
Methods
Numeric Computing
Numerical Analysis
Optimization
Original Paper
Quadratic equations
Theory of Computation
title A note on hybridization process applied on transformed double step size model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T09%3A35%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20note%20on%20hybridization%20process%20applied%20on%20transformed%20double%20step%20size%20model&rft.jtitle=Numerical%20algorithms&rft.au=Petrovi%C4%87,%20Milena%20J.&rft.date=2020-10-01&rft.volume=85&rft.issue=2&rft.spage=449&rft.epage=465&rft.pages=449-465&rft.issn=1017-1398&rft.eissn=1572-9265&rft_id=info:doi/10.1007/s11075-019-00821-8&rft_dat=%3Cproquest_cross%3E2918493618%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918493618&rft_id=info:pmid/&rfr_iscdi=true