Loss Function for Training Models of Segmentation of Document Images

This work is devoted to improving the quality of segmentation of images of various scientific papers and legal acts by neural network models by training them using modified loss functions that take into account special features of images of the appropriate subject domain. The analysis of existing lo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Programming and computer software 2023-12, Vol.49 (7), p.574-589
Hauptverfasser: Perminov, A. I., Turdakov, D. Yu, Belyaeva, O. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 589
container_issue 7
container_start_page 574
container_title Programming and computer software
container_volume 49
creator Perminov, A. I.
Turdakov, D. Yu
Belyaeva, O. V.
description This work is devoted to improving the quality of segmentation of images of various scientific papers and legal acts by neural network models by training them using modified loss functions that take into account special features of images of the appropriate subject domain. The analysis of existing loss functions is carried out, and new functions are proposed that work both with the coordinates of bounding boxes and use information about the pixels of the input image. To assess the quality, a neural network segmentation model with modified loss functions is trained, and a theoretical assessment is carried out using a simulation experiment showing the convergence rate and segmentation error. As a result of the study, rapidly converging loss functions are created that improve the quality of document image segmentation using additional information about the input data.
doi_str_mv 10.1134/S0361768823070058
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918492894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918492894</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-70ea4b01c945617d143b66cd6fc77c17b99986e11b087f02b81c712eee8b52e03</originalsourceid><addsrcrecordid>eNp1UDtPwzAQthBIlMIPYLPEHLhzXD9G1FKoFMTQMkeJ60SpWrvYycC_x6FIDIjpdPc97u4j5BbhHjHnD2vIBUqhFMtBAszUGZmgAJXlTOA5mYxwNuKX5CrGHQACcD4hi8LHSJeDM33nHW18oJtQda5zLX31W7uP1Dd0bduDdX31zUn9wpthHNDVoWptvCYXTbWP9uanTsn78mkzf8mKt-fV_LHIDBOqzyTYiteARvNZOnaLPK-FMFvRGCkNylprrYRFrEHJBlit0Ehk1lpVz5iFfEruTr7H4D8GG_ty54fg0sqSaVRcM6V5YuGJZUL6LdimPIbuUIXPEqEcwyr_hJU07KSJietaG36d_xd9Ab-baeM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918492894</pqid></control><display><type>article</type><title>Loss Function for Training Models of Segmentation of Document Images</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Perminov, A. I. ; Turdakov, D. Yu ; Belyaeva, O. V.</creator><creatorcontrib>Perminov, A. I. ; Turdakov, D. Yu ; Belyaeva, O. V.</creatorcontrib><description>This work is devoted to improving the quality of segmentation of images of various scientific papers and legal acts by neural network models by training them using modified loss functions that take into account special features of images of the appropriate subject domain. The analysis of existing loss functions is carried out, and new functions are proposed that work both with the coordinates of bounding boxes and use information about the pixels of the input image. To assess the quality, a neural network segmentation model with modified loss functions is trained, and a theoretical assessment is carried out using a simulation experiment showing the convergence rate and segmentation error. As a result of the study, rapidly converging loss functions are created that improve the quality of document image segmentation using additional information about the input data.</description><identifier>ISSN: 0361-7688</identifier><identifier>EISSN: 1608-3261</identifier><identifier>DOI: 10.1134/S0361768823070058</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Artificial Intelligence ; Computer Science ; Convergence ; Documents ; Error analysis ; Image quality ; Image segmentation ; Neural networks ; Operating Systems ; Quality assessment ; Software Engineering ; Software Engineering/Programming and Operating Systems ; Training</subject><ispartof>Programming and computer software, 2023-12, Vol.49 (7), p.574-589</ispartof><rights>Pleiades Publishing, Ltd. 2023. ISSN 0361-7688, Programming and Computer Software, 2023, Vol. 49, No. 7, pp. 574–589. © Pleiades Publishing, Ltd., 2023. Russian Text © The Author(s), 2022, published in Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS), 2022, Vol. 34, No. 2.</rights><rights>Pleiades Publishing, Ltd. 2023. ISSN 0361-7688, Programming and Computer Software, 2023, Vol. 49, No. 7, pp. 574–589. © Pleiades Publishing, Ltd., 2023. Russian Text © The Author(s), 2022, published in Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS), 2022, Vol. 34, No. 2.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-70ea4b01c945617d143b66cd6fc77c17b99986e11b087f02b81c712eee8b52e03</cites><orcidid>0000-0002-6008-9671 ; 0000-0001-8745-0984 ; 0000-0001-8047-0114</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0361768823070058$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918492894?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21387,27923,27924,33743,41487,42556,43804,51318,64384,64388,72240</link.rule.ids></links><search><creatorcontrib>Perminov, A. I.</creatorcontrib><creatorcontrib>Turdakov, D. Yu</creatorcontrib><creatorcontrib>Belyaeva, O. V.</creatorcontrib><title>Loss Function for Training Models of Segmentation of Document Images</title><title>Programming and computer software</title><addtitle>Program Comput Soft</addtitle><description>This work is devoted to improving the quality of segmentation of images of various scientific papers and legal acts by neural network models by training them using modified loss functions that take into account special features of images of the appropriate subject domain. The analysis of existing loss functions is carried out, and new functions are proposed that work both with the coordinates of bounding boxes and use information about the pixels of the input image. To assess the quality, a neural network segmentation model with modified loss functions is trained, and a theoretical assessment is carried out using a simulation experiment showing the convergence rate and segmentation error. As a result of the study, rapidly converging loss functions are created that improve the quality of document image segmentation using additional information about the input data.</description><subject>Artificial Intelligence</subject><subject>Computer Science</subject><subject>Convergence</subject><subject>Documents</subject><subject>Error analysis</subject><subject>Image quality</subject><subject>Image segmentation</subject><subject>Neural networks</subject><subject>Operating Systems</subject><subject>Quality assessment</subject><subject>Software Engineering</subject><subject>Software Engineering/Programming and Operating Systems</subject><subject>Training</subject><issn>0361-7688</issn><issn>1608-3261</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1UDtPwzAQthBIlMIPYLPEHLhzXD9G1FKoFMTQMkeJ60SpWrvYycC_x6FIDIjpdPc97u4j5BbhHjHnD2vIBUqhFMtBAszUGZmgAJXlTOA5mYxwNuKX5CrGHQACcD4hi8LHSJeDM33nHW18oJtQda5zLX31W7uP1Dd0bduDdX31zUn9wpthHNDVoWptvCYXTbWP9uanTsn78mkzf8mKt-fV_LHIDBOqzyTYiteARvNZOnaLPK-FMFvRGCkNylprrYRFrEHJBlit0Ehk1lpVz5iFfEruTr7H4D8GG_ty54fg0sqSaVRcM6V5YuGJZUL6LdimPIbuUIXPEqEcwyr_hJU07KSJietaG36d_xd9Ab-baeM</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Perminov, A. I.</creator><creator>Turdakov, D. Yu</creator><creator>Belyaeva, O. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-6008-9671</orcidid><orcidid>https://orcid.org/0000-0001-8745-0984</orcidid><orcidid>https://orcid.org/0000-0001-8047-0114</orcidid></search><sort><creationdate>20231201</creationdate><title>Loss Function for Training Models of Segmentation of Document Images</title><author>Perminov, A. I. ; Turdakov, D. Yu ; Belyaeva, O. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-70ea4b01c945617d143b66cd6fc77c17b99986e11b087f02b81c712eee8b52e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial Intelligence</topic><topic>Computer Science</topic><topic>Convergence</topic><topic>Documents</topic><topic>Error analysis</topic><topic>Image quality</topic><topic>Image segmentation</topic><topic>Neural networks</topic><topic>Operating Systems</topic><topic>Quality assessment</topic><topic>Software Engineering</topic><topic>Software Engineering/Programming and Operating Systems</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perminov, A. I.</creatorcontrib><creatorcontrib>Turdakov, D. Yu</creatorcontrib><creatorcontrib>Belyaeva, O. V.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Programming and computer software</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perminov, A. I.</au><au>Turdakov, D. Yu</au><au>Belyaeva, O. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Loss Function for Training Models of Segmentation of Document Images</atitle><jtitle>Programming and computer software</jtitle><stitle>Program Comput Soft</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>49</volume><issue>7</issue><spage>574</spage><epage>589</epage><pages>574-589</pages><issn>0361-7688</issn><eissn>1608-3261</eissn><abstract>This work is devoted to improving the quality of segmentation of images of various scientific papers and legal acts by neural network models by training them using modified loss functions that take into account special features of images of the appropriate subject domain. The analysis of existing loss functions is carried out, and new functions are proposed that work both with the coordinates of bounding boxes and use information about the pixels of the input image. To assess the quality, a neural network segmentation model with modified loss functions is trained, and a theoretical assessment is carried out using a simulation experiment showing the convergence rate and segmentation error. As a result of the study, rapidly converging loss functions are created that improve the quality of document image segmentation using additional information about the input data.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0361768823070058</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-6008-9671</orcidid><orcidid>https://orcid.org/0000-0001-8745-0984</orcidid><orcidid>https://orcid.org/0000-0001-8047-0114</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0361-7688
ispartof Programming and computer software, 2023-12, Vol.49 (7), p.574-589
issn 0361-7688
1608-3261
language eng
recordid cdi_proquest_journals_2918492894
source ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Artificial Intelligence
Computer Science
Convergence
Documents
Error analysis
Image quality
Image segmentation
Neural networks
Operating Systems
Quality assessment
Software Engineering
Software Engineering/Programming and Operating Systems
Training
title Loss Function for Training Models of Segmentation of Document Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T05%3A11%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Loss%20Function%20for%20Training%20Models%20of%20Segmentation%20of%20Document%20Images&rft.jtitle=Programming%20and%20computer%20software&rft.au=Perminov,%20A.%20I.&rft.date=2023-12-01&rft.volume=49&rft.issue=7&rft.spage=574&rft.epage=589&rft.pages=574-589&rft.issn=0361-7688&rft.eissn=1608-3261&rft_id=info:doi/10.1134/S0361768823070058&rft_dat=%3Cproquest_cross%3E2918492894%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918492894&rft_id=info:pmid/&rfr_iscdi=true