Loss Function for Training Models of Segmentation of Document Images
This work is devoted to improving the quality of segmentation of images of various scientific papers and legal acts by neural network models by training them using modified loss functions that take into account special features of images of the appropriate subject domain. The analysis of existing lo...
Gespeichert in:
Veröffentlicht in: | Programming and computer software 2023-12, Vol.49 (7), p.574-589 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 589 |
---|---|
container_issue | 7 |
container_start_page | 574 |
container_title | Programming and computer software |
container_volume | 49 |
creator | Perminov, A. I. Turdakov, D. Yu Belyaeva, O. V. |
description | This work is devoted to improving the quality of segmentation of images of various scientific papers and legal acts by neural network models by training them using modified loss functions that take into account special features of images of the appropriate subject domain. The analysis of existing loss functions is carried out, and new functions are proposed that work both with the coordinates of bounding boxes and use information about the pixels of the input image. To assess the quality, a neural network segmentation model with modified loss functions is trained, and a theoretical assessment is carried out using a simulation experiment showing the convergence rate and segmentation error. As a result of the study, rapidly converging loss functions are created that improve the quality of document image segmentation using additional information about the input data. |
doi_str_mv | 10.1134/S0361768823070058 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918492894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918492894</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-70ea4b01c945617d143b66cd6fc77c17b99986e11b087f02b81c712eee8b52e03</originalsourceid><addsrcrecordid>eNp1UDtPwzAQthBIlMIPYLPEHLhzXD9G1FKoFMTQMkeJ60SpWrvYycC_x6FIDIjpdPc97u4j5BbhHjHnD2vIBUqhFMtBAszUGZmgAJXlTOA5mYxwNuKX5CrGHQACcD4hi8LHSJeDM33nHW18oJtQda5zLX31W7uP1Dd0bduDdX31zUn9wpthHNDVoWptvCYXTbWP9uanTsn78mkzf8mKt-fV_LHIDBOqzyTYiteARvNZOnaLPK-FMFvRGCkNylprrYRFrEHJBlit0Ehk1lpVz5iFfEruTr7H4D8GG_ty54fg0sqSaVRcM6V5YuGJZUL6LdimPIbuUIXPEqEcwyr_hJU07KSJietaG36d_xd9Ab-baeM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918492894</pqid></control><display><type>article</type><title>Loss Function for Training Models of Segmentation of Document Images</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Perminov, A. I. ; Turdakov, D. Yu ; Belyaeva, O. V.</creator><creatorcontrib>Perminov, A. I. ; Turdakov, D. Yu ; Belyaeva, O. V.</creatorcontrib><description>This work is devoted to improving the quality of segmentation of images of various scientific papers and legal acts by neural network models by training them using modified loss functions that take into account special features of images of the appropriate subject domain. The analysis of existing loss functions is carried out, and new functions are proposed that work both with the coordinates of bounding boxes and use information about the pixels of the input image. To assess the quality, a neural network segmentation model with modified loss functions is trained, and a theoretical assessment is carried out using a simulation experiment showing the convergence rate and segmentation error. As a result of the study, rapidly converging loss functions are created that improve the quality of document image segmentation using additional information about the input data.</description><identifier>ISSN: 0361-7688</identifier><identifier>EISSN: 1608-3261</identifier><identifier>DOI: 10.1134/S0361768823070058</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Artificial Intelligence ; Computer Science ; Convergence ; Documents ; Error analysis ; Image quality ; Image segmentation ; Neural networks ; Operating Systems ; Quality assessment ; Software Engineering ; Software Engineering/Programming and Operating Systems ; Training</subject><ispartof>Programming and computer software, 2023-12, Vol.49 (7), p.574-589</ispartof><rights>Pleiades Publishing, Ltd. 2023. ISSN 0361-7688, Programming and Computer Software, 2023, Vol. 49, No. 7, pp. 574–589. © Pleiades Publishing, Ltd., 2023. Russian Text © The Author(s), 2022, published in Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS), 2022, Vol. 34, No. 2.</rights><rights>Pleiades Publishing, Ltd. 2023. ISSN 0361-7688, Programming and Computer Software, 2023, Vol. 49, No. 7, pp. 574–589. © Pleiades Publishing, Ltd., 2023. Russian Text © The Author(s), 2022, published in Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS), 2022, Vol. 34, No. 2.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-70ea4b01c945617d143b66cd6fc77c17b99986e11b087f02b81c712eee8b52e03</cites><orcidid>0000-0002-6008-9671 ; 0000-0001-8745-0984 ; 0000-0001-8047-0114</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0361768823070058$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918492894?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21387,27923,27924,33743,41487,42556,43804,51318,64384,64388,72240</link.rule.ids></links><search><creatorcontrib>Perminov, A. I.</creatorcontrib><creatorcontrib>Turdakov, D. Yu</creatorcontrib><creatorcontrib>Belyaeva, O. V.</creatorcontrib><title>Loss Function for Training Models of Segmentation of Document Images</title><title>Programming and computer software</title><addtitle>Program Comput Soft</addtitle><description>This work is devoted to improving the quality of segmentation of images of various scientific papers and legal acts by neural network models by training them using modified loss functions that take into account special features of images of the appropriate subject domain. The analysis of existing loss functions is carried out, and new functions are proposed that work both with the coordinates of bounding boxes and use information about the pixels of the input image. To assess the quality, a neural network segmentation model with modified loss functions is trained, and a theoretical assessment is carried out using a simulation experiment showing the convergence rate and segmentation error. As a result of the study, rapidly converging loss functions are created that improve the quality of document image segmentation using additional information about the input data.</description><subject>Artificial Intelligence</subject><subject>Computer Science</subject><subject>Convergence</subject><subject>Documents</subject><subject>Error analysis</subject><subject>Image quality</subject><subject>Image segmentation</subject><subject>Neural networks</subject><subject>Operating Systems</subject><subject>Quality assessment</subject><subject>Software Engineering</subject><subject>Software Engineering/Programming and Operating Systems</subject><subject>Training</subject><issn>0361-7688</issn><issn>1608-3261</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1UDtPwzAQthBIlMIPYLPEHLhzXD9G1FKoFMTQMkeJ60SpWrvYycC_x6FIDIjpdPc97u4j5BbhHjHnD2vIBUqhFMtBAszUGZmgAJXlTOA5mYxwNuKX5CrGHQACcD4hi8LHSJeDM33nHW18oJtQda5zLX31W7uP1Dd0bduDdX31zUn9wpthHNDVoWptvCYXTbWP9uanTsn78mkzf8mKt-fV_LHIDBOqzyTYiteARvNZOnaLPK-FMFvRGCkNylprrYRFrEHJBlit0Ehk1lpVz5iFfEruTr7H4D8GG_ty54fg0sqSaVRcM6V5YuGJZUL6LdimPIbuUIXPEqEcwyr_hJU07KSJietaG36d_xd9Ab-baeM</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Perminov, A. I.</creator><creator>Turdakov, D. Yu</creator><creator>Belyaeva, O. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-6008-9671</orcidid><orcidid>https://orcid.org/0000-0001-8745-0984</orcidid><orcidid>https://orcid.org/0000-0001-8047-0114</orcidid></search><sort><creationdate>20231201</creationdate><title>Loss Function for Training Models of Segmentation of Document Images</title><author>Perminov, A. I. ; Turdakov, D. Yu ; Belyaeva, O. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-70ea4b01c945617d143b66cd6fc77c17b99986e11b087f02b81c712eee8b52e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial Intelligence</topic><topic>Computer Science</topic><topic>Convergence</topic><topic>Documents</topic><topic>Error analysis</topic><topic>Image quality</topic><topic>Image segmentation</topic><topic>Neural networks</topic><topic>Operating Systems</topic><topic>Quality assessment</topic><topic>Software Engineering</topic><topic>Software Engineering/Programming and Operating Systems</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perminov, A. I.</creatorcontrib><creatorcontrib>Turdakov, D. Yu</creatorcontrib><creatorcontrib>Belyaeva, O. V.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Programming and computer software</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perminov, A. I.</au><au>Turdakov, D. Yu</au><au>Belyaeva, O. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Loss Function for Training Models of Segmentation of Document Images</atitle><jtitle>Programming and computer software</jtitle><stitle>Program Comput Soft</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>49</volume><issue>7</issue><spage>574</spage><epage>589</epage><pages>574-589</pages><issn>0361-7688</issn><eissn>1608-3261</eissn><abstract>This work is devoted to improving the quality of segmentation of images of various scientific papers and legal acts by neural network models by training them using modified loss functions that take into account special features of images of the appropriate subject domain. The analysis of existing loss functions is carried out, and new functions are proposed that work both with the coordinates of bounding boxes and use information about the pixels of the input image. To assess the quality, a neural network segmentation model with modified loss functions is trained, and a theoretical assessment is carried out using a simulation experiment showing the convergence rate and segmentation error. As a result of the study, rapidly converging loss functions are created that improve the quality of document image segmentation using additional information about the input data.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0361768823070058</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-6008-9671</orcidid><orcidid>https://orcid.org/0000-0001-8745-0984</orcidid><orcidid>https://orcid.org/0000-0001-8047-0114</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-7688 |
ispartof | Programming and computer software, 2023-12, Vol.49 (7), p.574-589 |
issn | 0361-7688 1608-3261 |
language | eng |
recordid | cdi_proquest_journals_2918492894 |
source | ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Artificial Intelligence Computer Science Convergence Documents Error analysis Image quality Image segmentation Neural networks Operating Systems Quality assessment Software Engineering Software Engineering/Programming and Operating Systems Training |
title | Loss Function for Training Models of Segmentation of Document Images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T05%3A11%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Loss%20Function%20for%20Training%20Models%20of%20Segmentation%20of%20Document%20Images&rft.jtitle=Programming%20and%20computer%20software&rft.au=Perminov,%20A.%20I.&rft.date=2023-12-01&rft.volume=49&rft.issue=7&rft.spage=574&rft.epage=589&rft.pages=574-589&rft.issn=0361-7688&rft.eissn=1608-3261&rft_id=info:doi/10.1134/S0361768823070058&rft_dat=%3Cproquest_cross%3E2918492894%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918492894&rft_id=info:pmid/&rfr_iscdi=true |