A cubic regularization of Newton’s method with finite difference Hessian approximations

In this paper, we present a version of the cubic regularization of Newton’s method for unconstrained nonconvex optimization, in which the Hessian matrices are approximated by forward finite difference Hessians. The regularization parameter of the cubic models and the accuracy of the Hessian approxim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical algorithms 2022-06, Vol.90 (2), p.607-630
Hauptverfasser: Grapiglia, G. N., Gonçalves, M. L. N., Silva, G. N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we present a version of the cubic regularization of Newton’s method for unconstrained nonconvex optimization, in which the Hessian matrices are approximated by forward finite difference Hessians. The regularization parameter of the cubic models and the accuracy of the Hessian approximations are jointly adjusted using a nonmonotone line search criterion. Assuming that the Hessian of the objective function is globally Lipschitz continuous, we show that the proposed method needs at most O n ε − 3 / 2 function and gradient evaluations to generate an ε -approximate stationary point, where n is the dimension of the domain of the objective function. Preliminary numerical results corroborate our theoretical findings.
ISSN:1017-1398
1572-9265
DOI:10.1007/s11075-021-01200-y