Inverse central ordering for the Newton interpolation formula

An inverse central ordering of the nodes is proposed for the Newton interpolation formula. This ordering may improve the stability for certain distributions of nodes. For equidistant nodes, an upper bound of the conditioning is provided. This bound is close to the bound of the conditioning in the La...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical algorithms 2022-08, Vol.90 (4), p.1691-1713
Hauptverfasser: Carnicer, J. M., Khiar, Y., Peña, J. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1713
container_issue 4
container_start_page 1691
container_title Numerical algorithms
container_volume 90
creator Carnicer, J. M.
Khiar, Y.
Peña, J. M.
description An inverse central ordering of the nodes is proposed for the Newton interpolation formula. This ordering may improve the stability for certain distributions of nodes. For equidistant nodes, an upper bound of the conditioning is provided. This bound is close to the bound of the conditioning in the Lagrange interpolation formula, whose conditioning is the lowest. This ordering is related to a pivoting strategy of a matrix elimination procedure called Neville elimination. The results are illustrated with examples.
doi_str_mv 10.1007/s11075-021-01247-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918492383</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918492383</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-7ea18a203aee5253e2ec0303dd93882f409af2422e54144a71c91828111c3c453</originalsourceid><addsrcrecordid>eNp9kE9PwzAMxSMEEmPwBThV4hyInXRJDxzQxJ9JE1zgHEWdC526piQZjG9PRpG4cbItv9-z_Bg7B3EJQuirCCB0yQUCF4BK890Bm0CpkVc4Kw9zL0BzkJU5ZicxroXIGOoJu170HxQiFTX1Kbiu8GFFoe1fi8aHIr1R8UifyfdF2ycKg-9cavOUl5tt507ZUeO6SGe_dcpe7m6f5w98-XS_mN8seS1nMnFNDoxDIR1RiaUkpFpIIVerShqDjRKVa1AhUqlAKaehrsCgAYBa1qqUU3Yx-g7Bv28pJrv229DnkxazUlUojcwqHFV18DEGauwQ2o0LXxaE3cdkx5hsjsn-xGR3GZIjFIf92xT-rP-hvgGDgmn_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918492383</pqid></control><display><type>article</type><title>Inverse central ordering for the Newton interpolation formula</title><source>SpringerLink Journals - AutoHoldings</source><creator>Carnicer, J. M. ; Khiar, Y. ; Peña, J. M.</creator><creatorcontrib>Carnicer, J. M. ; Khiar, Y. ; Peña, J. M.</creatorcontrib><description>An inverse central ordering of the nodes is proposed for the Newton interpolation formula. This ordering may improve the stability for certain distributions of nodes. For equidistant nodes, an upper bound of the conditioning is provided. This bound is close to the bound of the conditioning in the Lagrange interpolation formula, whose conditioning is the lowest. This ordering is related to a pivoting strategy of a matrix elimination procedure called Neville elimination. The results are illustrated with examples.</description><identifier>ISSN: 1017-1398</identifier><identifier>EISSN: 1572-9265</identifier><identifier>DOI: 10.1007/s11075-021-01247-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Algorithms ; Codes ; Computer Science ; Conditioning ; Hypotheses ; Interpolation ; Nodes ; Numeric Computing ; Numerical Analysis ; Original Paper ; Theory of Computation ; Upper bounds</subject><ispartof>Numerical algorithms, 2022-08, Vol.90 (4), p.1691-1713</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-7ea18a203aee5253e2ec0303dd93882f409af2422e54144a71c91828111c3c453</citedby><cites>FETCH-LOGICAL-c363t-7ea18a203aee5253e2ec0303dd93882f409af2422e54144a71c91828111c3c453</cites><orcidid>0000-0003-4359-1499</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11075-021-01247-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11075-021-01247-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Carnicer, J. M.</creatorcontrib><creatorcontrib>Khiar, Y.</creatorcontrib><creatorcontrib>Peña, J. M.</creatorcontrib><title>Inverse central ordering for the Newton interpolation formula</title><title>Numerical algorithms</title><addtitle>Numer Algor</addtitle><description>An inverse central ordering of the nodes is proposed for the Newton interpolation formula. This ordering may improve the stability for certain distributions of nodes. For equidistant nodes, an upper bound of the conditioning is provided. This bound is close to the bound of the conditioning in the Lagrange interpolation formula, whose conditioning is the lowest. This ordering is related to a pivoting strategy of a matrix elimination procedure called Neville elimination. The results are illustrated with examples.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Codes</subject><subject>Computer Science</subject><subject>Conditioning</subject><subject>Hypotheses</subject><subject>Interpolation</subject><subject>Nodes</subject><subject>Numeric Computing</subject><subject>Numerical Analysis</subject><subject>Original Paper</subject><subject>Theory of Computation</subject><subject>Upper bounds</subject><issn>1017-1398</issn><issn>1572-9265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE9PwzAMxSMEEmPwBThV4hyInXRJDxzQxJ9JE1zgHEWdC526piQZjG9PRpG4cbItv9-z_Bg7B3EJQuirCCB0yQUCF4BK890Bm0CpkVc4Kw9zL0BzkJU5ZicxroXIGOoJu170HxQiFTX1Kbiu8GFFoe1fi8aHIr1R8UifyfdF2ycKg-9cavOUl5tt507ZUeO6SGe_dcpe7m6f5w98-XS_mN8seS1nMnFNDoxDIR1RiaUkpFpIIVerShqDjRKVa1AhUqlAKaehrsCgAYBa1qqUU3Yx-g7Bv28pJrv229DnkxazUlUojcwqHFV18DEGauwQ2o0LXxaE3cdkx5hsjsn-xGR3GZIjFIf92xT-rP-hvgGDgmn_</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Carnicer, J. M.</creator><creator>Khiar, Y.</creator><creator>Peña, J. M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-4359-1499</orcidid></search><sort><creationdate>20220801</creationdate><title>Inverse central ordering for the Newton interpolation formula</title><author>Carnicer, J. M. ; Khiar, Y. ; Peña, J. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-7ea18a203aee5253e2ec0303dd93882f409af2422e54144a71c91828111c3c453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Codes</topic><topic>Computer Science</topic><topic>Conditioning</topic><topic>Hypotheses</topic><topic>Interpolation</topic><topic>Nodes</topic><topic>Numeric Computing</topic><topic>Numerical Analysis</topic><topic>Original Paper</topic><topic>Theory of Computation</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carnicer, J. M.</creatorcontrib><creatorcontrib>Khiar, Y.</creatorcontrib><creatorcontrib>Peña, J. M.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Numerical algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carnicer, J. M.</au><au>Khiar, Y.</au><au>Peña, J. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inverse central ordering for the Newton interpolation formula</atitle><jtitle>Numerical algorithms</jtitle><stitle>Numer Algor</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>90</volume><issue>4</issue><spage>1691</spage><epage>1713</epage><pages>1691-1713</pages><issn>1017-1398</issn><eissn>1572-9265</eissn><abstract>An inverse central ordering of the nodes is proposed for the Newton interpolation formula. This ordering may improve the stability for certain distributions of nodes. For equidistant nodes, an upper bound of the conditioning is provided. This bound is close to the bound of the conditioning in the Lagrange interpolation formula, whose conditioning is the lowest. This ordering is related to a pivoting strategy of a matrix elimination procedure called Neville elimination. The results are illustrated with examples.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11075-021-01247-x</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-4359-1499</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1017-1398
ispartof Numerical algorithms, 2022-08, Vol.90 (4), p.1691-1713
issn 1017-1398
1572-9265
language eng
recordid cdi_proquest_journals_2918492383
source SpringerLink Journals - AutoHoldings
subjects Algebra
Algorithms
Codes
Computer Science
Conditioning
Hypotheses
Interpolation
Nodes
Numeric Computing
Numerical Analysis
Original Paper
Theory of Computation
Upper bounds
title Inverse central ordering for the Newton interpolation formula
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T02%3A16%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inverse%20central%20ordering%20for%20the%20Newton%20interpolation%20formula&rft.jtitle=Numerical%20algorithms&rft.au=Carnicer,%20J.%20M.&rft.date=2022-08-01&rft.volume=90&rft.issue=4&rft.spage=1691&rft.epage=1713&rft.pages=1691-1713&rft.issn=1017-1398&rft.eissn=1572-9265&rft_id=info:doi/10.1007/s11075-021-01247-x&rft_dat=%3Cproquest_cross%3E2918492383%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918492383&rft_id=info:pmid/&rfr_iscdi=true