Inverse central ordering for the Newton interpolation formula
An inverse central ordering of the nodes is proposed for the Newton interpolation formula. This ordering may improve the stability for certain distributions of nodes. For equidistant nodes, an upper bound of the conditioning is provided. This bound is close to the bound of the conditioning in the La...
Gespeichert in:
Veröffentlicht in: | Numerical algorithms 2022-08, Vol.90 (4), p.1691-1713 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1713 |
---|---|
container_issue | 4 |
container_start_page | 1691 |
container_title | Numerical algorithms |
container_volume | 90 |
creator | Carnicer, J. M. Khiar, Y. Peña, J. M. |
description | An inverse central ordering of the nodes is proposed for the Newton interpolation formula. This ordering may improve the stability for certain distributions of nodes. For equidistant nodes, an upper bound of the conditioning is provided. This bound is close to the bound of the conditioning in the Lagrange interpolation formula, whose conditioning is the lowest. This ordering is related to a pivoting strategy of a matrix elimination procedure called Neville elimination. The results are illustrated with examples. |
doi_str_mv | 10.1007/s11075-021-01247-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918492383</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918492383</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-7ea18a203aee5253e2ec0303dd93882f409af2422e54144a71c91828111c3c453</originalsourceid><addsrcrecordid>eNp9kE9PwzAMxSMEEmPwBThV4hyInXRJDxzQxJ9JE1zgHEWdC526piQZjG9PRpG4cbItv9-z_Bg7B3EJQuirCCB0yQUCF4BK890Bm0CpkVc4Kw9zL0BzkJU5ZicxroXIGOoJu170HxQiFTX1Kbiu8GFFoe1fi8aHIr1R8UifyfdF2ycKg-9cavOUl5tt507ZUeO6SGe_dcpe7m6f5w98-XS_mN8seS1nMnFNDoxDIR1RiaUkpFpIIVerShqDjRKVa1AhUqlAKaehrsCgAYBa1qqUU3Yx-g7Bv28pJrv229DnkxazUlUojcwqHFV18DEGauwQ2o0LXxaE3cdkx5hsjsn-xGR3GZIjFIf92xT-rP-hvgGDgmn_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918492383</pqid></control><display><type>article</type><title>Inverse central ordering for the Newton interpolation formula</title><source>SpringerLink Journals - AutoHoldings</source><creator>Carnicer, J. M. ; Khiar, Y. ; Peña, J. M.</creator><creatorcontrib>Carnicer, J. M. ; Khiar, Y. ; Peña, J. M.</creatorcontrib><description>An inverse central ordering of the nodes is proposed for the Newton interpolation formula. This ordering may improve the stability for certain distributions of nodes. For equidistant nodes, an upper bound of the conditioning is provided. This bound is close to the bound of the conditioning in the Lagrange interpolation formula, whose conditioning is the lowest. This ordering is related to a pivoting strategy of a matrix elimination procedure called Neville elimination. The results are illustrated with examples.</description><identifier>ISSN: 1017-1398</identifier><identifier>EISSN: 1572-9265</identifier><identifier>DOI: 10.1007/s11075-021-01247-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Algorithms ; Codes ; Computer Science ; Conditioning ; Hypotheses ; Interpolation ; Nodes ; Numeric Computing ; Numerical Analysis ; Original Paper ; Theory of Computation ; Upper bounds</subject><ispartof>Numerical algorithms, 2022-08, Vol.90 (4), p.1691-1713</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-7ea18a203aee5253e2ec0303dd93882f409af2422e54144a71c91828111c3c453</citedby><cites>FETCH-LOGICAL-c363t-7ea18a203aee5253e2ec0303dd93882f409af2422e54144a71c91828111c3c453</cites><orcidid>0000-0003-4359-1499</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11075-021-01247-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11075-021-01247-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Carnicer, J. M.</creatorcontrib><creatorcontrib>Khiar, Y.</creatorcontrib><creatorcontrib>Peña, J. M.</creatorcontrib><title>Inverse central ordering for the Newton interpolation formula</title><title>Numerical algorithms</title><addtitle>Numer Algor</addtitle><description>An inverse central ordering of the nodes is proposed for the Newton interpolation formula. This ordering may improve the stability for certain distributions of nodes. For equidistant nodes, an upper bound of the conditioning is provided. This bound is close to the bound of the conditioning in the Lagrange interpolation formula, whose conditioning is the lowest. This ordering is related to a pivoting strategy of a matrix elimination procedure called Neville elimination. The results are illustrated with examples.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Codes</subject><subject>Computer Science</subject><subject>Conditioning</subject><subject>Hypotheses</subject><subject>Interpolation</subject><subject>Nodes</subject><subject>Numeric Computing</subject><subject>Numerical Analysis</subject><subject>Original Paper</subject><subject>Theory of Computation</subject><subject>Upper bounds</subject><issn>1017-1398</issn><issn>1572-9265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE9PwzAMxSMEEmPwBThV4hyInXRJDxzQxJ9JE1zgHEWdC526piQZjG9PRpG4cbItv9-z_Bg7B3EJQuirCCB0yQUCF4BK890Bm0CpkVc4Kw9zL0BzkJU5ZicxroXIGOoJu170HxQiFTX1Kbiu8GFFoe1fi8aHIr1R8UifyfdF2ycKg-9cavOUl5tt507ZUeO6SGe_dcpe7m6f5w98-XS_mN8seS1nMnFNDoxDIR1RiaUkpFpIIVerShqDjRKVa1AhUqlAKaehrsCgAYBa1qqUU3Yx-g7Bv28pJrv229DnkxazUlUojcwqHFV18DEGauwQ2o0LXxaE3cdkx5hsjsn-xGR3GZIjFIf92xT-rP-hvgGDgmn_</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Carnicer, J. M.</creator><creator>Khiar, Y.</creator><creator>Peña, J. M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-4359-1499</orcidid></search><sort><creationdate>20220801</creationdate><title>Inverse central ordering for the Newton interpolation formula</title><author>Carnicer, J. M. ; Khiar, Y. ; Peña, J. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-7ea18a203aee5253e2ec0303dd93882f409af2422e54144a71c91828111c3c453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Codes</topic><topic>Computer Science</topic><topic>Conditioning</topic><topic>Hypotheses</topic><topic>Interpolation</topic><topic>Nodes</topic><topic>Numeric Computing</topic><topic>Numerical Analysis</topic><topic>Original Paper</topic><topic>Theory of Computation</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carnicer, J. M.</creatorcontrib><creatorcontrib>Khiar, Y.</creatorcontrib><creatorcontrib>Peña, J. M.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Numerical algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carnicer, J. M.</au><au>Khiar, Y.</au><au>Peña, J. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inverse central ordering for the Newton interpolation formula</atitle><jtitle>Numerical algorithms</jtitle><stitle>Numer Algor</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>90</volume><issue>4</issue><spage>1691</spage><epage>1713</epage><pages>1691-1713</pages><issn>1017-1398</issn><eissn>1572-9265</eissn><abstract>An inverse central ordering of the nodes is proposed for the Newton interpolation formula. This ordering may improve the stability for certain distributions of nodes. For equidistant nodes, an upper bound of the conditioning is provided. This bound is close to the bound of the conditioning in the Lagrange interpolation formula, whose conditioning is the lowest. This ordering is related to a pivoting strategy of a matrix elimination procedure called Neville elimination. The results are illustrated with examples.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11075-021-01247-x</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-4359-1499</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1017-1398 |
ispartof | Numerical algorithms, 2022-08, Vol.90 (4), p.1691-1713 |
issn | 1017-1398 1572-9265 |
language | eng |
recordid | cdi_proquest_journals_2918492383 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algebra Algorithms Codes Computer Science Conditioning Hypotheses Interpolation Nodes Numeric Computing Numerical Analysis Original Paper Theory of Computation Upper bounds |
title | Inverse central ordering for the Newton interpolation formula |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T02%3A16%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inverse%20central%20ordering%20for%20the%20Newton%20interpolation%20formula&rft.jtitle=Numerical%20algorithms&rft.au=Carnicer,%20J.%20M.&rft.date=2022-08-01&rft.volume=90&rft.issue=4&rft.spage=1691&rft.epage=1713&rft.pages=1691-1713&rft.issn=1017-1398&rft.eissn=1572-9265&rft_id=info:doi/10.1007/s11075-021-01247-x&rft_dat=%3Cproquest_cross%3E2918492383%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918492383&rft_id=info:pmid/&rfr_iscdi=true |