Three-step alternating iterations for index 1 and non-singular matrices

Iterative methods based on matrix splittings are useful in solving large sparse linear systems. In this direction, proper splittings and its several extensions are used to deal with singular and rectangular linear systems. In this article, we introduce a new iteration scheme called three-step altern...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical algorithms 2020-06, Vol.84 (2), p.457-483
Hauptverfasser: Nandi, Ashish Kumar, Sahoo, Jajati Keshari, Mishra, Debasisha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 483
container_issue 2
container_start_page 457
container_title Numerical algorithms
container_volume 84
creator Nandi, Ashish Kumar
Sahoo, Jajati Keshari
Mishra, Debasisha
description Iterative methods based on matrix splittings are useful in solving large sparse linear systems. In this direction, proper splittings and its several extensions are used to deal with singular and rectangular linear systems. In this article, we introduce a new iteration scheme called three-step alternating iterations using proper splittings and group inverses to find an approximate solution of singular linear systems, iteratively. As a special case, the same findings also work for finding an approximate solution of non-singular linear systems. A preconditioned alternating iterative scheme is also proposed to relax some sufficient conditions and to obtain faster convergence as well. We then show that our scheme converges faster than the unpreconditioned one. The theoretical findings are then validated numerically.
doi_str_mv 10.1007/s11075-019-00764-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918492308</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918492308</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-3fe1d9c8bb78fa23414da18d8934ea457ddb3d98dc40862246eae70eb4cb94fe3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAc3TysZvkKEWrUPBSzyG7ma1b2mxNtqD_3ugK3jzNO_C8w_AQcs3hlgPou8w56IoBt6ystWJwQma80oJZUVenJQPXjEtrzslFzluAUhN6Rpbrt4TI8ogH6ncjpujHPm5oX2JJQ8y0GxLtY8APyqmPgcYhslyY484nuvdj6lvMl-Ss87uMV79zTl4fH9aLJ7Z6WT4v7lesFRpGJjvkwbamabTpvJCKq-C5CcZKhV5VOoRGBmtCq8DUQqgaPWrARrWNVR3KObmZ7h7S8H7EPLrtcCxP77ITlhtlhQRTKDFRbRpyTti5Q-r3Pn06Du5bmJuEuSLM_QhzUEpyKuUCxw2mv9P_tL4A6IRuVg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918492308</pqid></control><display><type>article</type><title>Three-step alternating iterations for index 1 and non-singular matrices</title><source>SpringerNature Journals</source><creator>Nandi, Ashish Kumar ; Sahoo, Jajati Keshari ; Mishra, Debasisha</creator><creatorcontrib>Nandi, Ashish Kumar ; Sahoo, Jajati Keshari ; Mishra, Debasisha</creatorcontrib><description>Iterative methods based on matrix splittings are useful in solving large sparse linear systems. In this direction, proper splittings and its several extensions are used to deal with singular and rectangular linear systems. In this article, we introduce a new iteration scheme called three-step alternating iterations using proper splittings and group inverses to find an approximate solution of singular linear systems, iteratively. As a special case, the same findings also work for finding an approximate solution of non-singular linear systems. A preconditioned alternating iterative scheme is also proposed to relax some sufficient conditions and to obtain faster convergence as well. We then show that our scheme converges faster than the unpreconditioned one. The theoretical findings are then validated numerically.</description><identifier>ISSN: 1017-1398</identifier><identifier>EISSN: 1572-9265</identifier><identifier>DOI: 10.1007/s11075-019-00764-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Algorithms ; Computer Science ; Convergence ; Euclidean space ; Growth models ; Iterative methods ; Linear systems ; Markov analysis ; Mathematical analysis ; Numeric Computing ; Numerical Analysis ; Original Paper ; Partial differential equations ; Theory of Computation</subject><ispartof>Numerical algorithms, 2020-06, Vol.84 (2), p.457-483</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-3fe1d9c8bb78fa23414da18d8934ea457ddb3d98dc40862246eae70eb4cb94fe3</cites><orcidid>0000-0001-7162-1873</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11075-019-00764-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11075-019-00764-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Nandi, Ashish Kumar</creatorcontrib><creatorcontrib>Sahoo, Jajati Keshari</creatorcontrib><creatorcontrib>Mishra, Debasisha</creatorcontrib><title>Three-step alternating iterations for index 1 and non-singular matrices</title><title>Numerical algorithms</title><addtitle>Numer Algor</addtitle><description>Iterative methods based on matrix splittings are useful in solving large sparse linear systems. In this direction, proper splittings and its several extensions are used to deal with singular and rectangular linear systems. In this article, we introduce a new iteration scheme called three-step alternating iterations using proper splittings and group inverses to find an approximate solution of singular linear systems, iteratively. As a special case, the same findings also work for finding an approximate solution of non-singular linear systems. A preconditioned alternating iterative scheme is also proposed to relax some sufficient conditions and to obtain faster convergence as well. We then show that our scheme converges faster than the unpreconditioned one. The theoretical findings are then validated numerically.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Computer Science</subject><subject>Convergence</subject><subject>Euclidean space</subject><subject>Growth models</subject><subject>Iterative methods</subject><subject>Linear systems</subject><subject>Markov analysis</subject><subject>Mathematical analysis</subject><subject>Numeric Computing</subject><subject>Numerical Analysis</subject><subject>Original Paper</subject><subject>Partial differential equations</subject><subject>Theory of Computation</subject><issn>1017-1398</issn><issn>1572-9265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wFPAc3TysZvkKEWrUPBSzyG7ma1b2mxNtqD_3ugK3jzNO_C8w_AQcs3hlgPou8w56IoBt6ystWJwQma80oJZUVenJQPXjEtrzslFzluAUhN6Rpbrt4TI8ogH6ncjpujHPm5oX2JJQ8y0GxLtY8APyqmPgcYhslyY484nuvdj6lvMl-Ss87uMV79zTl4fH9aLJ7Z6WT4v7lesFRpGJjvkwbamabTpvJCKq-C5CcZKhV5VOoRGBmtCq8DUQqgaPWrARrWNVR3KObmZ7h7S8H7EPLrtcCxP77ITlhtlhQRTKDFRbRpyTti5Q-r3Pn06Du5bmJuEuSLM_QhzUEpyKuUCxw2mv9P_tL4A6IRuVg</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Nandi, Ashish Kumar</creator><creator>Sahoo, Jajati Keshari</creator><creator>Mishra, Debasisha</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-7162-1873</orcidid></search><sort><creationdate>20200601</creationdate><title>Three-step alternating iterations for index 1 and non-singular matrices</title><author>Nandi, Ashish Kumar ; Sahoo, Jajati Keshari ; Mishra, Debasisha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-3fe1d9c8bb78fa23414da18d8934ea457ddb3d98dc40862246eae70eb4cb94fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Computer Science</topic><topic>Convergence</topic><topic>Euclidean space</topic><topic>Growth models</topic><topic>Iterative methods</topic><topic>Linear systems</topic><topic>Markov analysis</topic><topic>Mathematical analysis</topic><topic>Numeric Computing</topic><topic>Numerical Analysis</topic><topic>Original Paper</topic><topic>Partial differential equations</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nandi, Ashish Kumar</creatorcontrib><creatorcontrib>Sahoo, Jajati Keshari</creatorcontrib><creatorcontrib>Mishra, Debasisha</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Numerical algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nandi, Ashish Kumar</au><au>Sahoo, Jajati Keshari</au><au>Mishra, Debasisha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-step alternating iterations for index 1 and non-singular matrices</atitle><jtitle>Numerical algorithms</jtitle><stitle>Numer Algor</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>84</volume><issue>2</issue><spage>457</spage><epage>483</epage><pages>457-483</pages><issn>1017-1398</issn><eissn>1572-9265</eissn><abstract>Iterative methods based on matrix splittings are useful in solving large sparse linear systems. In this direction, proper splittings and its several extensions are used to deal with singular and rectangular linear systems. In this article, we introduce a new iteration scheme called three-step alternating iterations using proper splittings and group inverses to find an approximate solution of singular linear systems, iteratively. As a special case, the same findings also work for finding an approximate solution of non-singular linear systems. A preconditioned alternating iterative scheme is also proposed to relax some sufficient conditions and to obtain faster convergence as well. We then show that our scheme converges faster than the unpreconditioned one. The theoretical findings are then validated numerically.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11075-019-00764-0</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0001-7162-1873</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1017-1398
ispartof Numerical algorithms, 2020-06, Vol.84 (2), p.457-483
issn 1017-1398
1572-9265
language eng
recordid cdi_proquest_journals_2918492308
source SpringerNature Journals
subjects Algebra
Algorithms
Computer Science
Convergence
Euclidean space
Growth models
Iterative methods
Linear systems
Markov analysis
Mathematical analysis
Numeric Computing
Numerical Analysis
Original Paper
Partial differential equations
Theory of Computation
title Three-step alternating iterations for index 1 and non-singular matrices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T03%3A47%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-step%20alternating%20iterations%20for%20index%201%20and%20non-singular%20matrices&rft.jtitle=Numerical%20algorithms&rft.au=Nandi,%20Ashish%20Kumar&rft.date=2020-06-01&rft.volume=84&rft.issue=2&rft.spage=457&rft.epage=483&rft.pages=457-483&rft.issn=1017-1398&rft.eissn=1572-9265&rft_id=info:doi/10.1007/s11075-019-00764-0&rft_dat=%3Cproquest_cross%3E2918492308%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918492308&rft_id=info:pmid/&rfr_iscdi=true