Stieltjes interlacing of zeros of little q-Jacobi and q-Laguerre polynomials from different sequences
Stieltjes interlacing states that if { p n ( z ) } n = 0 ∞ is a sequence of orthogonal polynomials, then there is at least one zero of p n ( z ) in between any two consecutive zeros of p m ( z ), where m < n − 1. Stieltjes interlacing holds for the zeros of polynomials from different sequences of...
Gespeichert in:
Veröffentlicht in: | Numerical algorithms 2023, Vol.92 (1), p.723-746 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Stieltjes interlacing states that if
{
p
n
(
z
)
}
n
=
0
∞
is a sequence of orthogonal polynomials, then there is at least one zero of
p
n
(
z
) in between any two consecutive zeros of
p
m
(
z
), where
m
<
n
− 1. Stieltjes interlacing holds for the zeros of polynomials from different sequences of little
q
-Jacobi polynomials
p
n
(
z
;
a
,
b
|
q
), 0 <
a
q |
---|---|
ISSN: | 1017-1398 1572-9265 |
DOI: | 10.1007/s11075-022-01387-8 |