Approximating fixed points of generalized α-nonexpansive mappings in Banach spaces by new faster iteration process

In this paper, we introduce a new iterative scheme to approximate fixed point of generalized α -nonexpansive mappings and then, we prove that the proposed iteration process is faster than all of Picard, Mann, Ishikawa, Noor, Agarwal, Abbas, and Thakur processes for contractive mappings. We also obta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical algorithms 2019-07, Vol.81 (3), p.1129-1148
Hauptverfasser: Piri, H., Daraby, B., Rahrovi, S., Ghasemi, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1148
container_issue 3
container_start_page 1129
container_title Numerical algorithms
container_volume 81
creator Piri, H.
Daraby, B.
Rahrovi, S.
Ghasemi, M.
description In this paper, we introduce a new iterative scheme to approximate fixed point of generalized α -nonexpansive mappings and then, we prove that the proposed iteration process is faster than all of Picard, Mann, Ishikawa, Noor, Agarwal, Abbas, and Thakur processes for contractive mappings. We also obtain some weak and strong convergence theorems for generalized α -nonexpansive mappings. At the end, by using an example for generalized α -nonexpansive mappings, we compare the convergence behavior of new iterative process with other iterative processes.
doi_str_mv 10.1007/s11075-018-0588-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918491160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918491160</sourcerecordid><originalsourceid>FETCH-LOGICAL-c231x-eac44d2a264cfa994a573ae15605ed1b10163f190d29d5fc904a72a392f331613</originalsourceid><addsrcrecordid>eNp1kMtOAyEUhonRxFp9AHckrlEODDPDsjbekiZudE3oDFSalkGY6uhb-SI-kzRj4soNh3D-S_gQOgd6CZRWVwmAVoJQqAkVdU2GAzQBUTEiWSkO851CRYDL-hidpLSmNLtYNUFpFkLsBrfVvfMrbN1gWhw65_uEO4tXxpuoN-4zv35_Ed95MwTtk3szeKtDyJ6EncfX2uvmBaegG5Pw8gN7846tTr2J2OUjp3ce56a8TqfoyOpNMme_c4qeb2-e5vdk8Xj3MJ8tSMM4DMTopihapllZNFZLWWhRcW1AlFSYFpb5SyW3IGnLZCtsI2mhK6a5ZJZzKIFP0cWYm3tfdyb1at3tos-VikmoCwlQ0qyCUdXELqVorAox44gfCqjas1UjW5XZqj1bNWQPGz0pa_3KxL_k_00_QYx_Ng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918491160</pqid></control><display><type>article</type><title>Approximating fixed points of generalized α-nonexpansive mappings in Banach spaces by new faster iteration process</title><source>SpringerLink Journals - AutoHoldings</source><creator>Piri, H. ; Daraby, B. ; Rahrovi, S. ; Ghasemi, M.</creator><creatorcontrib>Piri, H. ; Daraby, B. ; Rahrovi, S. ; Ghasemi, M.</creatorcontrib><description>In this paper, we introduce a new iterative scheme to approximate fixed point of generalized α -nonexpansive mappings and then, we prove that the proposed iteration process is faster than all of Picard, Mann, Ishikawa, Noor, Agarwal, Abbas, and Thakur processes for contractive mappings. We also obtain some weak and strong convergence theorems for generalized α -nonexpansive mappings. At the end, by using an example for generalized α -nonexpansive mappings, we compare the convergence behavior of new iterative process with other iterative processes.</description><identifier>ISSN: 1017-1398</identifier><identifier>EISSN: 1572-9265</identifier><identifier>DOI: 10.1007/s11075-018-0588-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Algorithms ; Banach spaces ; Computer Science ; Convergence ; Mathematics ; Numeric Computing ; Numerical Analysis ; Original Paper ; Theorems ; Theory of Computation</subject><ispartof>Numerical algorithms, 2019-07, Vol.81 (3), p.1129-1148</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c231x-eac44d2a264cfa994a573ae15605ed1b10163f190d29d5fc904a72a392f331613</citedby><cites>FETCH-LOGICAL-c231x-eac44d2a264cfa994a573ae15605ed1b10163f190d29d5fc904a72a392f331613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11075-018-0588-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11075-018-0588-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Piri, H.</creatorcontrib><creatorcontrib>Daraby, B.</creatorcontrib><creatorcontrib>Rahrovi, S.</creatorcontrib><creatorcontrib>Ghasemi, M.</creatorcontrib><title>Approximating fixed points of generalized α-nonexpansive mappings in Banach spaces by new faster iteration process</title><title>Numerical algorithms</title><addtitle>Numer Algor</addtitle><description>In this paper, we introduce a new iterative scheme to approximate fixed point of generalized α -nonexpansive mappings and then, we prove that the proposed iteration process is faster than all of Picard, Mann, Ishikawa, Noor, Agarwal, Abbas, and Thakur processes for contractive mappings. We also obtain some weak and strong convergence theorems for generalized α -nonexpansive mappings. At the end, by using an example for generalized α -nonexpansive mappings, we compare the convergence behavior of new iterative process with other iterative processes.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Banach spaces</subject><subject>Computer Science</subject><subject>Convergence</subject><subject>Mathematics</subject><subject>Numeric Computing</subject><subject>Numerical Analysis</subject><subject>Original Paper</subject><subject>Theorems</subject><subject>Theory of Computation</subject><issn>1017-1398</issn><issn>1572-9265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kMtOAyEUhonRxFp9AHckrlEODDPDsjbekiZudE3oDFSalkGY6uhb-SI-kzRj4soNh3D-S_gQOgd6CZRWVwmAVoJQqAkVdU2GAzQBUTEiWSkO851CRYDL-hidpLSmNLtYNUFpFkLsBrfVvfMrbN1gWhw65_uEO4tXxpuoN-4zv35_Ed95MwTtk3szeKtDyJ6EncfX2uvmBaegG5Pw8gN7846tTr2J2OUjp3ce56a8TqfoyOpNMme_c4qeb2-e5vdk8Xj3MJ8tSMM4DMTopihapllZNFZLWWhRcW1AlFSYFpb5SyW3IGnLZCtsI2mhK6a5ZJZzKIFP0cWYm3tfdyb1at3tos-VikmoCwlQ0qyCUdXELqVorAox44gfCqjas1UjW5XZqj1bNWQPGz0pa_3KxL_k_00_QYx_Ng</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Piri, H.</creator><creator>Daraby, B.</creator><creator>Rahrovi, S.</creator><creator>Ghasemi, M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20190701</creationdate><title>Approximating fixed points of generalized α-nonexpansive mappings in Banach spaces by new faster iteration process</title><author>Piri, H. ; Daraby, B. ; Rahrovi, S. ; Ghasemi, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c231x-eac44d2a264cfa994a573ae15605ed1b10163f190d29d5fc904a72a392f331613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Banach spaces</topic><topic>Computer Science</topic><topic>Convergence</topic><topic>Mathematics</topic><topic>Numeric Computing</topic><topic>Numerical Analysis</topic><topic>Original Paper</topic><topic>Theorems</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Piri, H.</creatorcontrib><creatorcontrib>Daraby, B.</creatorcontrib><creatorcontrib>Rahrovi, S.</creatorcontrib><creatorcontrib>Ghasemi, M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Numerical algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Piri, H.</au><au>Daraby, B.</au><au>Rahrovi, S.</au><au>Ghasemi, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximating fixed points of generalized α-nonexpansive mappings in Banach spaces by new faster iteration process</atitle><jtitle>Numerical algorithms</jtitle><stitle>Numer Algor</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>81</volume><issue>3</issue><spage>1129</spage><epage>1148</epage><pages>1129-1148</pages><issn>1017-1398</issn><eissn>1572-9265</eissn><abstract>In this paper, we introduce a new iterative scheme to approximate fixed point of generalized α -nonexpansive mappings and then, we prove that the proposed iteration process is faster than all of Picard, Mann, Ishikawa, Noor, Agarwal, Abbas, and Thakur processes for contractive mappings. We also obtain some weak and strong convergence theorems for generalized α -nonexpansive mappings. At the end, by using an example for generalized α -nonexpansive mappings, we compare the convergence behavior of new iterative process with other iterative processes.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11075-018-0588-x</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1017-1398
ispartof Numerical algorithms, 2019-07, Vol.81 (3), p.1129-1148
issn 1017-1398
1572-9265
language eng
recordid cdi_proquest_journals_2918491160
source SpringerLink Journals - AutoHoldings
subjects Algebra
Algorithms
Banach spaces
Computer Science
Convergence
Mathematics
Numeric Computing
Numerical Analysis
Original Paper
Theorems
Theory of Computation
title Approximating fixed points of generalized α-nonexpansive mappings in Banach spaces by new faster iteration process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T08%3A42%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximating%20fixed%20points%20of%20generalized%20%CE%B1-nonexpansive%20mappings%20in%20Banach%20spaces%20by%20new%20faster%20iteration%20process&rft.jtitle=Numerical%20algorithms&rft.au=Piri,%20H.&rft.date=2019-07-01&rft.volume=81&rft.issue=3&rft.spage=1129&rft.epage=1148&rft.pages=1129-1148&rft.issn=1017-1398&rft.eissn=1572-9265&rft_id=info:doi/10.1007/s11075-018-0588-x&rft_dat=%3Cproquest_cross%3E2918491160%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918491160&rft_id=info:pmid/&rfr_iscdi=true