Some remarks on the numerical computation of integrals on an unbounded interval

An account of the error and the convergence theory is given for Gauss–Laguerre and Gauss–Radau–Laguerre quadrature formulae. We develop also truncated models of the original Gauss rules to compute integrals extended over the positive real axis. Numerical examples confirming the theoretical results a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical algorithms 2007-08, Vol.45 (1-4), p.37-48
Hauptverfasser: Capobianco, M. R., Criscuolo, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 48
container_issue 1-4
container_start_page 37
container_title Numerical algorithms
container_volume 45
creator Capobianco, M. R.
Criscuolo, G.
description An account of the error and the convergence theory is given for Gauss–Laguerre and Gauss–Radau–Laguerre quadrature formulae. We develop also truncated models of the original Gauss rules to compute integrals extended over the positive real axis. Numerical examples confirming the theoretical results are given comparing these rules among themselves and with different quadrature formulae proposed by other authors (Evans, Int. J. Comput. Math. 82:721–730, 2005; Gautschi, BIT 31:438–446, 1991).
doi_str_mv 10.1007/s11075-007-9078-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918490237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918490237</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-56ab3b9918c95dd23a7a3cae447f315e8a6a7f62eee175c2b3bdebccab12deb53</originalsourceid><addsrcrecordid>eNotkE9LAzEQxYMoWKsfwFvAczSTNJvNUYr_oNCDeg7Z7Kxu7SY12RX89qatp3nwfvOGeYRcA78FzvVdBuBasSKZ4bpm4oTMQGnBjKjUadEcNANp6nNykfOG87Il9IysX-OANOHg0lemMdDxE2mYBky9d1vq47CbRjf2xYkd7cOIH8ltD6QLdApNnEKL7cFJP257Sc664uPV_5yT98eHt-UzW62fXpb3K-aFliNTlWtkYwzU3qi2FdJpJ73DxUJ3EhTWrnK6qwQiglZeFLjFxnvXgChCyTm5OebuUvyeMI92E6cUykkrSurCcCF1oeBI-RRzTtjZXerLq78WuN33Zo-92b3c92aF_AOP62IL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918490237</pqid></control><display><type>article</type><title>Some remarks on the numerical computation of integrals on an unbounded interval</title><source>Springer Nature - Complete Springer Journals</source><creator>Capobianco, M. R. ; Criscuolo, G.</creator><creatorcontrib>Capobianco, M. R. ; Criscuolo, G.</creatorcontrib><description>An account of the error and the convergence theory is given for Gauss–Laguerre and Gauss–Radau–Laguerre quadrature formulae. We develop also truncated models of the original Gauss rules to compute integrals extended over the positive real axis. Numerical examples confirming the theoretical results are given comparing these rules among themselves and with different quadrature formulae proposed by other authors (Evans, Int. J. Comput. Math. 82:721–730, 2005; Gautschi, BIT 31:438–446, 1991).</description><identifier>ISSN: 1017-1398</identifier><identifier>EISSN: 1572-9265</identifier><identifier>DOI: 10.1007/s11075-007-9078-2</identifier><language>eng</language><publisher>New York: Springer Nature B.V</publisher><subject>Integrals ; Numerical analysis ; Quadratures</subject><ispartof>Numerical algorithms, 2007-08, Vol.45 (1-4), p.37-48</ispartof><rights>Springer Science+Business Media, Inc. 2007.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c273t-56ab3b9918c95dd23a7a3cae447f315e8a6a7f62eee175c2b3bdebccab12deb53</citedby><cites>FETCH-LOGICAL-c273t-56ab3b9918c95dd23a7a3cae447f315e8a6a7f62eee175c2b3bdebccab12deb53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Capobianco, M. R.</creatorcontrib><creatorcontrib>Criscuolo, G.</creatorcontrib><title>Some remarks on the numerical computation of integrals on an unbounded interval</title><title>Numerical algorithms</title><description>An account of the error and the convergence theory is given for Gauss–Laguerre and Gauss–Radau–Laguerre quadrature formulae. We develop also truncated models of the original Gauss rules to compute integrals extended over the positive real axis. Numerical examples confirming the theoretical results are given comparing these rules among themselves and with different quadrature formulae proposed by other authors (Evans, Int. J. Comput. Math. 82:721–730, 2005; Gautschi, BIT 31:438–446, 1991).</description><subject>Integrals</subject><subject>Numerical analysis</subject><subject>Quadratures</subject><issn>1017-1398</issn><issn>1572-9265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNotkE9LAzEQxYMoWKsfwFvAczSTNJvNUYr_oNCDeg7Z7Kxu7SY12RX89qatp3nwfvOGeYRcA78FzvVdBuBasSKZ4bpm4oTMQGnBjKjUadEcNANp6nNykfOG87Il9IysX-OANOHg0lemMdDxE2mYBky9d1vq47CbRjf2xYkd7cOIH8ltD6QLdApNnEKL7cFJP257Sc664uPV_5yT98eHt-UzW62fXpb3K-aFliNTlWtkYwzU3qi2FdJpJ73DxUJ3EhTWrnK6qwQiglZeFLjFxnvXgChCyTm5OebuUvyeMI92E6cUykkrSurCcCF1oeBI-RRzTtjZXerLq78WuN33Zo-92b3c92aF_AOP62IL</recordid><startdate>200708</startdate><enddate>200708</enddate><creator>Capobianco, M. R.</creator><creator>Criscuolo, G.</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>200708</creationdate><title>Some remarks on the numerical computation of integrals on an unbounded interval</title><author>Capobianco, M. R. ; Criscuolo, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-56ab3b9918c95dd23a7a3cae447f315e8a6a7f62eee175c2b3bdebccab12deb53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Integrals</topic><topic>Numerical analysis</topic><topic>Quadratures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Capobianco, M. R.</creatorcontrib><creatorcontrib>Criscuolo, G.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Numerical algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Capobianco, M. R.</au><au>Criscuolo, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some remarks on the numerical computation of integrals on an unbounded interval</atitle><jtitle>Numerical algorithms</jtitle><date>2007-08</date><risdate>2007</risdate><volume>45</volume><issue>1-4</issue><spage>37</spage><epage>48</epage><pages>37-48</pages><issn>1017-1398</issn><eissn>1572-9265</eissn><abstract>An account of the error and the convergence theory is given for Gauss–Laguerre and Gauss–Radau–Laguerre quadrature formulae. We develop also truncated models of the original Gauss rules to compute integrals extended over the positive real axis. Numerical examples confirming the theoretical results are given comparing these rules among themselves and with different quadrature formulae proposed by other authors (Evans, Int. J. Comput. Math. 82:721–730, 2005; Gautschi, BIT 31:438–446, 1991).</abstract><cop>New York</cop><pub>Springer Nature B.V</pub><doi>10.1007/s11075-007-9078-2</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1017-1398
ispartof Numerical algorithms, 2007-08, Vol.45 (1-4), p.37-48
issn 1017-1398
1572-9265
language eng
recordid cdi_proquest_journals_2918490237
source Springer Nature - Complete Springer Journals
subjects Integrals
Numerical analysis
Quadratures
title Some remarks on the numerical computation of integrals on an unbounded interval
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T18%3A21%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20remarks%20on%20the%20numerical%20computation%20of%20integrals%20on%20an%20unbounded%20interval&rft.jtitle=Numerical%20algorithms&rft.au=Capobianco,%20M.%20R.&rft.date=2007-08&rft.volume=45&rft.issue=1-4&rft.spage=37&rft.epage=48&rft.pages=37-48&rft.issn=1017-1398&rft.eissn=1572-9265&rft_id=info:doi/10.1007/s11075-007-9078-2&rft_dat=%3Cproquest_cross%3E2918490237%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918490237&rft_id=info:pmid/&rfr_iscdi=true