Some remarks on the numerical computation of integrals on an unbounded interval
An account of the error and the convergence theory is given for Gauss–Laguerre and Gauss–Radau–Laguerre quadrature formulae. We develop also truncated models of the original Gauss rules to compute integrals extended over the positive real axis. Numerical examples confirming the theoretical results a...
Gespeichert in:
Veröffentlicht in: | Numerical algorithms 2007-08, Vol.45 (1-4), p.37-48 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 48 |
---|---|
container_issue | 1-4 |
container_start_page | 37 |
container_title | Numerical algorithms |
container_volume | 45 |
creator | Capobianco, M. R. Criscuolo, G. |
description | An account of the error and the convergence theory is given for Gauss–Laguerre and Gauss–Radau–Laguerre quadrature formulae. We develop also truncated models of the original Gauss rules to compute integrals extended over the positive real axis. Numerical examples confirming the theoretical results are given comparing these rules among themselves and with different quadrature formulae proposed by other authors (Evans, Int. J. Comput. Math. 82:721–730, 2005; Gautschi, BIT 31:438–446, 1991). |
doi_str_mv | 10.1007/s11075-007-9078-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918490237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918490237</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-56ab3b9918c95dd23a7a3cae447f315e8a6a7f62eee175c2b3bdebccab12deb53</originalsourceid><addsrcrecordid>eNotkE9LAzEQxYMoWKsfwFvAczSTNJvNUYr_oNCDeg7Z7Kxu7SY12RX89qatp3nwfvOGeYRcA78FzvVdBuBasSKZ4bpm4oTMQGnBjKjUadEcNANp6nNykfOG87Il9IysX-OANOHg0lemMdDxE2mYBky9d1vq47CbRjf2xYkd7cOIH8ltD6QLdApNnEKL7cFJP257Sc664uPV_5yT98eHt-UzW62fXpb3K-aFliNTlWtkYwzU3qi2FdJpJ73DxUJ3EhTWrnK6qwQiglZeFLjFxnvXgChCyTm5OebuUvyeMI92E6cUykkrSurCcCF1oeBI-RRzTtjZXerLq78WuN33Zo-92b3c92aF_AOP62IL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918490237</pqid></control><display><type>article</type><title>Some remarks on the numerical computation of integrals on an unbounded interval</title><source>Springer Nature - Complete Springer Journals</source><creator>Capobianco, M. R. ; Criscuolo, G.</creator><creatorcontrib>Capobianco, M. R. ; Criscuolo, G.</creatorcontrib><description>An account of the error and the convergence theory is given for Gauss–Laguerre and Gauss–Radau–Laguerre quadrature formulae. We develop also truncated models of the original Gauss rules to compute integrals extended over the positive real axis. Numerical examples confirming the theoretical results are given comparing these rules among themselves and with different quadrature formulae proposed by other authors (Evans, Int. J. Comput. Math. 82:721–730, 2005; Gautschi, BIT 31:438–446, 1991).</description><identifier>ISSN: 1017-1398</identifier><identifier>EISSN: 1572-9265</identifier><identifier>DOI: 10.1007/s11075-007-9078-2</identifier><language>eng</language><publisher>New York: Springer Nature B.V</publisher><subject>Integrals ; Numerical analysis ; Quadratures</subject><ispartof>Numerical algorithms, 2007-08, Vol.45 (1-4), p.37-48</ispartof><rights>Springer Science+Business Media, Inc. 2007.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c273t-56ab3b9918c95dd23a7a3cae447f315e8a6a7f62eee175c2b3bdebccab12deb53</citedby><cites>FETCH-LOGICAL-c273t-56ab3b9918c95dd23a7a3cae447f315e8a6a7f62eee175c2b3bdebccab12deb53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Capobianco, M. R.</creatorcontrib><creatorcontrib>Criscuolo, G.</creatorcontrib><title>Some remarks on the numerical computation of integrals on an unbounded interval</title><title>Numerical algorithms</title><description>An account of the error and the convergence theory is given for Gauss–Laguerre and Gauss–Radau–Laguerre quadrature formulae. We develop also truncated models of the original Gauss rules to compute integrals extended over the positive real axis. Numerical examples confirming the theoretical results are given comparing these rules among themselves and with different quadrature formulae proposed by other authors (Evans, Int. J. Comput. Math. 82:721–730, 2005; Gautschi, BIT 31:438–446, 1991).</description><subject>Integrals</subject><subject>Numerical analysis</subject><subject>Quadratures</subject><issn>1017-1398</issn><issn>1572-9265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNotkE9LAzEQxYMoWKsfwFvAczSTNJvNUYr_oNCDeg7Z7Kxu7SY12RX89qatp3nwfvOGeYRcA78FzvVdBuBasSKZ4bpm4oTMQGnBjKjUadEcNANp6nNykfOG87Il9IysX-OANOHg0lemMdDxE2mYBky9d1vq47CbRjf2xYkd7cOIH8ltD6QLdApNnEKL7cFJP257Sc664uPV_5yT98eHt-UzW62fXpb3K-aFliNTlWtkYwzU3qi2FdJpJ73DxUJ3EhTWrnK6qwQiglZeFLjFxnvXgChCyTm5OebuUvyeMI92E6cUykkrSurCcCF1oeBI-RRzTtjZXerLq78WuN33Zo-92b3c92aF_AOP62IL</recordid><startdate>200708</startdate><enddate>200708</enddate><creator>Capobianco, M. R.</creator><creator>Criscuolo, G.</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>200708</creationdate><title>Some remarks on the numerical computation of integrals on an unbounded interval</title><author>Capobianco, M. R. ; Criscuolo, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-56ab3b9918c95dd23a7a3cae447f315e8a6a7f62eee175c2b3bdebccab12deb53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Integrals</topic><topic>Numerical analysis</topic><topic>Quadratures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Capobianco, M. R.</creatorcontrib><creatorcontrib>Criscuolo, G.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Numerical algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Capobianco, M. R.</au><au>Criscuolo, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some remarks on the numerical computation of integrals on an unbounded interval</atitle><jtitle>Numerical algorithms</jtitle><date>2007-08</date><risdate>2007</risdate><volume>45</volume><issue>1-4</issue><spage>37</spage><epage>48</epage><pages>37-48</pages><issn>1017-1398</issn><eissn>1572-9265</eissn><abstract>An account of the error and the convergence theory is given for Gauss–Laguerre and Gauss–Radau–Laguerre quadrature formulae. We develop also truncated models of the original Gauss rules to compute integrals extended over the positive real axis. Numerical examples confirming the theoretical results are given comparing these rules among themselves and with different quadrature formulae proposed by other authors (Evans, Int. J. Comput. Math. 82:721–730, 2005; Gautschi, BIT 31:438–446, 1991).</abstract><cop>New York</cop><pub>Springer Nature B.V</pub><doi>10.1007/s11075-007-9078-2</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1017-1398 |
ispartof | Numerical algorithms, 2007-08, Vol.45 (1-4), p.37-48 |
issn | 1017-1398 1572-9265 |
language | eng |
recordid | cdi_proquest_journals_2918490237 |
source | Springer Nature - Complete Springer Journals |
subjects | Integrals Numerical analysis Quadratures |
title | Some remarks on the numerical computation of integrals on an unbounded interval |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T18%3A21%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20remarks%20on%20the%20numerical%20computation%20of%20integrals%20on%20an%20unbounded%20interval&rft.jtitle=Numerical%20algorithms&rft.au=Capobianco,%20M.%20R.&rft.date=2007-08&rft.volume=45&rft.issue=1-4&rft.spage=37&rft.epage=48&rft.pages=37-48&rft.issn=1017-1398&rft.eissn=1572-9265&rft_id=info:doi/10.1007/s11075-007-9078-2&rft_dat=%3Cproquest_cross%3E2918490237%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918490237&rft_id=info:pmid/&rfr_iscdi=true |