Crystallization Regulation and Defect Passivation for Efficient Inverted Wide‐Bandgap Perovskite Solar Cells with over 21% Efficiency
Wide‐bandgap (WBG) perovskite solar cells (PSCs) have drawn great attention owing to their promising potential for constructing efficient tandem solar cells. However, the rapid crystallization results in poor film properties and easy formation of defects, thereby greatly restricting the acquisition...
Gespeichert in:
Veröffentlicht in: | Advanced energy materials 2024-01, Vol.14 (4), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Advanced energy materials |
container_volume | 14 |
creator | Su, Gangfeng Yu, Runnan Dong, Yiman He, Zhangwei Zhang, Yuling Wang, Ruyue Dang, Qi Sha, Shihao Lv, Qianglong Xu, Zhiyang Liu, Zhuoxu Li, Minghua Tan, Zhan'ao |
description | Wide‐bandgap (WBG) perovskite solar cells (PSCs) have drawn great attention owing to their promising potential for constructing efficient tandem solar cells. However, the rapid crystallization results in poor film properties and easy formation of defects, thereby greatly restricting the acquisition of a small open‐circuit voltage (VOC) deficit due to the severe nonradiative recombination. Herein, it introduced the triethanolamine borate (TB) to effectively slow down the rapid crystallization for preparing highly crystalline and uniform WBG perovskite films with reduced defects. The strong intermolecular interaction (e.g., coordination and hydrogen bond) between TB and perovskite can suppress the halide vacancy formation and inhibit phase segregation for improving long‐term stability. The devices based on a 1.65 eV perovskite absorber achieved a high efficiency of 21.55% with a VOC of 1.24 V, demonstrating the VOC deficit is as low as 0.41 V, which is one of the lowest reports. By combining a semitransparent WBG subcell with a narrow‐bandgap tin‐based PSC, the four‐terminal tandem solar cell delivers a high efficiency of 26.48%.
It reveals the degradation pathways of a wide range of state‐of‐the‐art nonfullerene acceptors from molecular to aggregation level. The structural confinement and molecular ordering are responsible for molecular conformational stability under illumination. The origin of increased nonradiative decay under illumination is predominantly in the aggregated states with strong intermolecular interactions while the intramolecular exciton dynamics are stable. |
doi_str_mv | 10.1002/aenm.202303344 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918435908</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918435908</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3574-fb7d1e3ff05df8af596db4abd2eb6f30bda595f184a421ed72d14364acfbc563</originalsourceid><addsrcrecordid>eNqFkE9Lw0AQxYMoWGqvnhfEY-r-S5oca6xaqFq04HHZZGfr1jSpu2lLPHnz6mf0k5gSqUfnMo_h_d7A87xTgvsEY3ohoVj2KaYMM8b5gdchIeF-GHF8uNeMHns95xa4GR6TxtnxPhNbu0rmuXmXlSkL9Ajzdd5KWSh0BRqyCk2lc2bTnnVp0UhrkxkoKjQuNmArUOjZKPj--LpsqLlcoSnYcuNeTQXoqcylRQnkuUNbU72gskEQJef7mKw-8Y60zB30fnfXm12PZsmtP3m4GSfDiZ-xYMB9nQ4UAaY1DpSOpA7iUKVcpopCGmqGUyWDONAk4pJTAmpAFeEs5DLTaRaErOudtbErW76twVViUa5t0XwUNG4oFsQ4alz91pXZ0jkLWqysWUpbC4LFrm6xq1vs626AuAW2Jof6H7cYju7v_tgfGyqHYw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918435908</pqid></control><display><type>article</type><title>Crystallization Regulation and Defect Passivation for Efficient Inverted Wide‐Bandgap Perovskite Solar Cells with over 21% Efficiency</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Su, Gangfeng ; Yu, Runnan ; Dong, Yiman ; He, Zhangwei ; Zhang, Yuling ; Wang, Ruyue ; Dang, Qi ; Sha, Shihao ; Lv, Qianglong ; Xu, Zhiyang ; Liu, Zhuoxu ; Li, Minghua ; Tan, Zhan'ao</creator><creatorcontrib>Su, Gangfeng ; Yu, Runnan ; Dong, Yiman ; He, Zhangwei ; Zhang, Yuling ; Wang, Ruyue ; Dang, Qi ; Sha, Shihao ; Lv, Qianglong ; Xu, Zhiyang ; Liu, Zhuoxu ; Li, Minghua ; Tan, Zhan'ao</creatorcontrib><description>Wide‐bandgap (WBG) perovskite solar cells (PSCs) have drawn great attention owing to their promising potential for constructing efficient tandem solar cells. However, the rapid crystallization results in poor film properties and easy formation of defects, thereby greatly restricting the acquisition of a small open‐circuit voltage (VOC) deficit due to the severe nonradiative recombination. Herein, it introduced the triethanolamine borate (TB) to effectively slow down the rapid crystallization for preparing highly crystalline and uniform WBG perovskite films with reduced defects. The strong intermolecular interaction (e.g., coordination and hydrogen bond) between TB and perovskite can suppress the halide vacancy formation and inhibit phase segregation for improving long‐term stability. The devices based on a 1.65 eV perovskite absorber achieved a high efficiency of 21.55% with a VOC of 1.24 V, demonstrating the VOC deficit is as low as 0.41 V, which is one of the lowest reports. By combining a semitransparent WBG subcell with a narrow‐bandgap tin‐based PSC, the four‐terminal tandem solar cell delivers a high efficiency of 26.48%.
It reveals the degradation pathways of a wide range of state‐of‐the‐art nonfullerene acceptors from molecular to aggregation level. The structural confinement and molecular ordering are responsible for molecular conformational stability under illumination. The origin of increased nonradiative decay under illumination is predominantly in the aggregated states with strong intermolecular interactions while the intramolecular exciton dynamics are stable.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202303344</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>4‐T tandem solar cells ; Circuits ; Crystal defects ; Crystallization ; crystallization regulation ; defect passivation ; Efficiency ; Energy gap ; Hydrogen bonds ; Perovskites ; Photovoltaic cells ; Solar cells ; Triethanolamine ; VOC deficit ; wide‐bandgap perovskite</subject><ispartof>Advanced energy materials, 2024-01, Vol.14 (4), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3574-fb7d1e3ff05df8af596db4abd2eb6f30bda595f184a421ed72d14364acfbc563</citedby><cites>FETCH-LOGICAL-c3574-fb7d1e3ff05df8af596db4abd2eb6f30bda595f184a421ed72d14364acfbc563</cites><orcidid>0000-0003-2700-4725</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.202303344$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.202303344$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Su, Gangfeng</creatorcontrib><creatorcontrib>Yu, Runnan</creatorcontrib><creatorcontrib>Dong, Yiman</creatorcontrib><creatorcontrib>He, Zhangwei</creatorcontrib><creatorcontrib>Zhang, Yuling</creatorcontrib><creatorcontrib>Wang, Ruyue</creatorcontrib><creatorcontrib>Dang, Qi</creatorcontrib><creatorcontrib>Sha, Shihao</creatorcontrib><creatorcontrib>Lv, Qianglong</creatorcontrib><creatorcontrib>Xu, Zhiyang</creatorcontrib><creatorcontrib>Liu, Zhuoxu</creatorcontrib><creatorcontrib>Li, Minghua</creatorcontrib><creatorcontrib>Tan, Zhan'ao</creatorcontrib><title>Crystallization Regulation and Defect Passivation for Efficient Inverted Wide‐Bandgap Perovskite Solar Cells with over 21% Efficiency</title><title>Advanced energy materials</title><description>Wide‐bandgap (WBG) perovskite solar cells (PSCs) have drawn great attention owing to their promising potential for constructing efficient tandem solar cells. However, the rapid crystallization results in poor film properties and easy formation of defects, thereby greatly restricting the acquisition of a small open‐circuit voltage (VOC) deficit due to the severe nonradiative recombination. Herein, it introduced the triethanolamine borate (TB) to effectively slow down the rapid crystallization for preparing highly crystalline and uniform WBG perovskite films with reduced defects. The strong intermolecular interaction (e.g., coordination and hydrogen bond) between TB and perovskite can suppress the halide vacancy formation and inhibit phase segregation for improving long‐term stability. The devices based on a 1.65 eV perovskite absorber achieved a high efficiency of 21.55% with a VOC of 1.24 V, demonstrating the VOC deficit is as low as 0.41 V, which is one of the lowest reports. By combining a semitransparent WBG subcell with a narrow‐bandgap tin‐based PSC, the four‐terminal tandem solar cell delivers a high efficiency of 26.48%.
It reveals the degradation pathways of a wide range of state‐of‐the‐art nonfullerene acceptors from molecular to aggregation level. The structural confinement and molecular ordering are responsible for molecular conformational stability under illumination. The origin of increased nonradiative decay under illumination is predominantly in the aggregated states with strong intermolecular interactions while the intramolecular exciton dynamics are stable.</description><subject>4‐T tandem solar cells</subject><subject>Circuits</subject><subject>Crystal defects</subject><subject>Crystallization</subject><subject>crystallization regulation</subject><subject>defect passivation</subject><subject>Efficiency</subject><subject>Energy gap</subject><subject>Hydrogen bonds</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Solar cells</subject><subject>Triethanolamine</subject><subject>VOC deficit</subject><subject>wide‐bandgap perovskite</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkE9Lw0AQxYMoWGqvnhfEY-r-S5oca6xaqFq04HHZZGfr1jSpu2lLPHnz6mf0k5gSqUfnMo_h_d7A87xTgvsEY3ohoVj2KaYMM8b5gdchIeF-GHF8uNeMHns95xa4GR6TxtnxPhNbu0rmuXmXlSkL9Ajzdd5KWSh0BRqyCk2lc2bTnnVp0UhrkxkoKjQuNmArUOjZKPj--LpsqLlcoSnYcuNeTQXoqcylRQnkuUNbU72gskEQJef7mKw-8Y60zB30fnfXm12PZsmtP3m4GSfDiZ-xYMB9nQ4UAaY1DpSOpA7iUKVcpopCGmqGUyWDONAk4pJTAmpAFeEs5DLTaRaErOudtbErW76twVViUa5t0XwUNG4oFsQ4alz91pXZ0jkLWqysWUpbC4LFrm6xq1vs626AuAW2Jof6H7cYju7v_tgfGyqHYw</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Su, Gangfeng</creator><creator>Yu, Runnan</creator><creator>Dong, Yiman</creator><creator>He, Zhangwei</creator><creator>Zhang, Yuling</creator><creator>Wang, Ruyue</creator><creator>Dang, Qi</creator><creator>Sha, Shihao</creator><creator>Lv, Qianglong</creator><creator>Xu, Zhiyang</creator><creator>Liu, Zhuoxu</creator><creator>Li, Minghua</creator><creator>Tan, Zhan'ao</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2700-4725</orcidid></search><sort><creationdate>20240101</creationdate><title>Crystallization Regulation and Defect Passivation for Efficient Inverted Wide‐Bandgap Perovskite Solar Cells with over 21% Efficiency</title><author>Su, Gangfeng ; Yu, Runnan ; Dong, Yiman ; He, Zhangwei ; Zhang, Yuling ; Wang, Ruyue ; Dang, Qi ; Sha, Shihao ; Lv, Qianglong ; Xu, Zhiyang ; Liu, Zhuoxu ; Li, Minghua ; Tan, Zhan'ao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3574-fb7d1e3ff05df8af596db4abd2eb6f30bda595f184a421ed72d14364acfbc563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>4‐T tandem solar cells</topic><topic>Circuits</topic><topic>Crystal defects</topic><topic>Crystallization</topic><topic>crystallization regulation</topic><topic>defect passivation</topic><topic>Efficiency</topic><topic>Energy gap</topic><topic>Hydrogen bonds</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Solar cells</topic><topic>Triethanolamine</topic><topic>VOC deficit</topic><topic>wide‐bandgap perovskite</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Su, Gangfeng</creatorcontrib><creatorcontrib>Yu, Runnan</creatorcontrib><creatorcontrib>Dong, Yiman</creatorcontrib><creatorcontrib>He, Zhangwei</creatorcontrib><creatorcontrib>Zhang, Yuling</creatorcontrib><creatorcontrib>Wang, Ruyue</creatorcontrib><creatorcontrib>Dang, Qi</creatorcontrib><creatorcontrib>Sha, Shihao</creatorcontrib><creatorcontrib>Lv, Qianglong</creatorcontrib><creatorcontrib>Xu, Zhiyang</creatorcontrib><creatorcontrib>Liu, Zhuoxu</creatorcontrib><creatorcontrib>Li, Minghua</creatorcontrib><creatorcontrib>Tan, Zhan'ao</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Su, Gangfeng</au><au>Yu, Runnan</au><au>Dong, Yiman</au><au>He, Zhangwei</au><au>Zhang, Yuling</au><au>Wang, Ruyue</au><au>Dang, Qi</au><au>Sha, Shihao</au><au>Lv, Qianglong</au><au>Xu, Zhiyang</au><au>Liu, Zhuoxu</au><au>Li, Minghua</au><au>Tan, Zhan'ao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crystallization Regulation and Defect Passivation for Efficient Inverted Wide‐Bandgap Perovskite Solar Cells with over 21% Efficiency</atitle><jtitle>Advanced energy materials</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>14</volume><issue>4</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Wide‐bandgap (WBG) perovskite solar cells (PSCs) have drawn great attention owing to their promising potential for constructing efficient tandem solar cells. However, the rapid crystallization results in poor film properties and easy formation of defects, thereby greatly restricting the acquisition of a small open‐circuit voltage (VOC) deficit due to the severe nonradiative recombination. Herein, it introduced the triethanolamine borate (TB) to effectively slow down the rapid crystallization for preparing highly crystalline and uniform WBG perovskite films with reduced defects. The strong intermolecular interaction (e.g., coordination and hydrogen bond) between TB and perovskite can suppress the halide vacancy formation and inhibit phase segregation for improving long‐term stability. The devices based on a 1.65 eV perovskite absorber achieved a high efficiency of 21.55% with a VOC of 1.24 V, demonstrating the VOC deficit is as low as 0.41 V, which is one of the lowest reports. By combining a semitransparent WBG subcell with a narrow‐bandgap tin‐based PSC, the four‐terminal tandem solar cell delivers a high efficiency of 26.48%.
It reveals the degradation pathways of a wide range of state‐of‐the‐art nonfullerene acceptors from molecular to aggregation level. The structural confinement and molecular ordering are responsible for molecular conformational stability under illumination. The origin of increased nonradiative decay under illumination is predominantly in the aggregated states with strong intermolecular interactions while the intramolecular exciton dynamics are stable.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202303344</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2700-4725</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-6832 |
ispartof | Advanced energy materials, 2024-01, Vol.14 (4), p.n/a |
issn | 1614-6832 1614-6840 |
language | eng |
recordid | cdi_proquest_journals_2918435908 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | 4‐T tandem solar cells Circuits Crystal defects Crystallization crystallization regulation defect passivation Efficiency Energy gap Hydrogen bonds Perovskites Photovoltaic cells Solar cells Triethanolamine VOC deficit wide‐bandgap perovskite |
title | Crystallization Regulation and Defect Passivation for Efficient Inverted Wide‐Bandgap Perovskite Solar Cells with over 21% Efficiency |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T20%3A06%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crystallization%20Regulation%20and%20Defect%20Passivation%20for%20Efficient%20Inverted%20Wide%E2%80%90Bandgap%20Perovskite%20Solar%20Cells%20with%20over%2021%25%20Efficiency&rft.jtitle=Advanced%20energy%20materials&rft.au=Su,%20Gangfeng&rft.date=2024-01-01&rft.volume=14&rft.issue=4&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202303344&rft_dat=%3Cproquest_cross%3E2918435908%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918435908&rft_id=info:pmid/&rfr_iscdi=true |