Crystallization Regulation and Defect Passivation for Efficient Inverted Wide‐Bandgap Perovskite Solar Cells with over 21% Efficiency

Wide‐bandgap (WBG) perovskite solar cells (PSCs) have drawn great attention owing to their promising potential for constructing efficient tandem solar cells. However, the rapid crystallization results in poor film properties and easy formation of defects, thereby greatly restricting the acquisition...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2024-01, Vol.14 (4), p.n/a
Hauptverfasser: Su, Gangfeng, Yu, Runnan, Dong, Yiman, He, Zhangwei, Zhang, Yuling, Wang, Ruyue, Dang, Qi, Sha, Shihao, Lv, Qianglong, Xu, Zhiyang, Liu, Zhuoxu, Li, Minghua, Tan, Zhan'ao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 4
container_start_page
container_title Advanced energy materials
container_volume 14
creator Su, Gangfeng
Yu, Runnan
Dong, Yiman
He, Zhangwei
Zhang, Yuling
Wang, Ruyue
Dang, Qi
Sha, Shihao
Lv, Qianglong
Xu, Zhiyang
Liu, Zhuoxu
Li, Minghua
Tan, Zhan'ao
description Wide‐bandgap (WBG) perovskite solar cells (PSCs) have drawn great attention owing to their promising potential for constructing efficient tandem solar cells. However, the rapid crystallization results in poor film properties and easy formation of defects, thereby greatly restricting the acquisition of a small open‐circuit voltage (VOC) deficit due to the severe nonradiative recombination. Herein, it introduced the triethanolamine borate (TB) to effectively slow down the rapid crystallization for preparing highly crystalline and uniform WBG perovskite films with reduced defects. The strong intermolecular interaction (e.g., coordination and hydrogen bond) between TB and perovskite can suppress the halide vacancy formation and inhibit phase segregation for improving long‐term stability. The devices based on a 1.65 eV perovskite absorber achieved a high efficiency of 21.55% with a VOC of 1.24 V, demonstrating the VOC deficit is as low as 0.41 V, which is one of the lowest reports. By combining a semitransparent WBG subcell with a narrow‐bandgap tin‐based PSC, the four‐terminal tandem solar cell delivers a high efficiency of 26.48%. It reveals the degradation pathways of a wide range of state‐of‐the‐art nonfullerene acceptors from molecular to aggregation level. The structural confinement and molecular ordering are responsible for molecular conformational stability under illumination. The origin of increased nonradiative decay under illumination is predominantly in the aggregated states with strong intermolecular interactions while the intramolecular exciton dynamics are stable.
doi_str_mv 10.1002/aenm.202303344
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918435908</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918435908</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3574-fb7d1e3ff05df8af596db4abd2eb6f30bda595f184a421ed72d14364acfbc563</originalsourceid><addsrcrecordid>eNqFkE9Lw0AQxYMoWGqvnhfEY-r-S5oca6xaqFq04HHZZGfr1jSpu2lLPHnz6mf0k5gSqUfnMo_h_d7A87xTgvsEY3ohoVj2KaYMM8b5gdchIeF-GHF8uNeMHns95xa4GR6TxtnxPhNbu0rmuXmXlSkL9Ajzdd5KWSh0BRqyCk2lc2bTnnVp0UhrkxkoKjQuNmArUOjZKPj--LpsqLlcoSnYcuNeTQXoqcylRQnkuUNbU72gskEQJef7mKw-8Y60zB30fnfXm12PZsmtP3m4GSfDiZ-xYMB9nQ4UAaY1DpSOpA7iUKVcpopCGmqGUyWDONAk4pJTAmpAFeEs5DLTaRaErOudtbErW76twVViUa5t0XwUNG4oFsQ4alz91pXZ0jkLWqysWUpbC4LFrm6xq1vs626AuAW2Jof6H7cYju7v_tgfGyqHYw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918435908</pqid></control><display><type>article</type><title>Crystallization Regulation and Defect Passivation for Efficient Inverted Wide‐Bandgap Perovskite Solar Cells with over 21% Efficiency</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Su, Gangfeng ; Yu, Runnan ; Dong, Yiman ; He, Zhangwei ; Zhang, Yuling ; Wang, Ruyue ; Dang, Qi ; Sha, Shihao ; Lv, Qianglong ; Xu, Zhiyang ; Liu, Zhuoxu ; Li, Minghua ; Tan, Zhan'ao</creator><creatorcontrib>Su, Gangfeng ; Yu, Runnan ; Dong, Yiman ; He, Zhangwei ; Zhang, Yuling ; Wang, Ruyue ; Dang, Qi ; Sha, Shihao ; Lv, Qianglong ; Xu, Zhiyang ; Liu, Zhuoxu ; Li, Minghua ; Tan, Zhan'ao</creatorcontrib><description>Wide‐bandgap (WBG) perovskite solar cells (PSCs) have drawn great attention owing to their promising potential for constructing efficient tandem solar cells. However, the rapid crystallization results in poor film properties and easy formation of defects, thereby greatly restricting the acquisition of a small open‐circuit voltage (VOC) deficit due to the severe nonradiative recombination. Herein, it introduced the triethanolamine borate (TB) to effectively slow down the rapid crystallization for preparing highly crystalline and uniform WBG perovskite films with reduced defects. The strong intermolecular interaction (e.g., coordination and hydrogen bond) between TB and perovskite can suppress the halide vacancy formation and inhibit phase segregation for improving long‐term stability. The devices based on a 1.65 eV perovskite absorber achieved a high efficiency of 21.55% with a VOC of 1.24 V, demonstrating the VOC deficit is as low as 0.41 V, which is one of the lowest reports. By combining a semitransparent WBG subcell with a narrow‐bandgap tin‐based PSC, the four‐terminal tandem solar cell delivers a high efficiency of 26.48%. It reveals the degradation pathways of a wide range of state‐of‐the‐art nonfullerene acceptors from molecular to aggregation level. The structural confinement and molecular ordering are responsible for molecular conformational stability under illumination. The origin of increased nonradiative decay under illumination is predominantly in the aggregated states with strong intermolecular interactions while the intramolecular exciton dynamics are stable.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202303344</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>4‐T tandem solar cells ; Circuits ; Crystal defects ; Crystallization ; crystallization regulation ; defect passivation ; Efficiency ; Energy gap ; Hydrogen bonds ; Perovskites ; Photovoltaic cells ; Solar cells ; Triethanolamine ; VOC deficit ; wide‐bandgap perovskite</subject><ispartof>Advanced energy materials, 2024-01, Vol.14 (4), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3574-fb7d1e3ff05df8af596db4abd2eb6f30bda595f184a421ed72d14364acfbc563</citedby><cites>FETCH-LOGICAL-c3574-fb7d1e3ff05df8af596db4abd2eb6f30bda595f184a421ed72d14364acfbc563</cites><orcidid>0000-0003-2700-4725</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.202303344$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.202303344$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Su, Gangfeng</creatorcontrib><creatorcontrib>Yu, Runnan</creatorcontrib><creatorcontrib>Dong, Yiman</creatorcontrib><creatorcontrib>He, Zhangwei</creatorcontrib><creatorcontrib>Zhang, Yuling</creatorcontrib><creatorcontrib>Wang, Ruyue</creatorcontrib><creatorcontrib>Dang, Qi</creatorcontrib><creatorcontrib>Sha, Shihao</creatorcontrib><creatorcontrib>Lv, Qianglong</creatorcontrib><creatorcontrib>Xu, Zhiyang</creatorcontrib><creatorcontrib>Liu, Zhuoxu</creatorcontrib><creatorcontrib>Li, Minghua</creatorcontrib><creatorcontrib>Tan, Zhan'ao</creatorcontrib><title>Crystallization Regulation and Defect Passivation for Efficient Inverted Wide‐Bandgap Perovskite Solar Cells with over 21% Efficiency</title><title>Advanced energy materials</title><description>Wide‐bandgap (WBG) perovskite solar cells (PSCs) have drawn great attention owing to their promising potential for constructing efficient tandem solar cells. However, the rapid crystallization results in poor film properties and easy formation of defects, thereby greatly restricting the acquisition of a small open‐circuit voltage (VOC) deficit due to the severe nonradiative recombination. Herein, it introduced the triethanolamine borate (TB) to effectively slow down the rapid crystallization for preparing highly crystalline and uniform WBG perovskite films with reduced defects. The strong intermolecular interaction (e.g., coordination and hydrogen bond) between TB and perovskite can suppress the halide vacancy formation and inhibit phase segregation for improving long‐term stability. The devices based on a 1.65 eV perovskite absorber achieved a high efficiency of 21.55% with a VOC of 1.24 V, demonstrating the VOC deficit is as low as 0.41 V, which is one of the lowest reports. By combining a semitransparent WBG subcell with a narrow‐bandgap tin‐based PSC, the four‐terminal tandem solar cell delivers a high efficiency of 26.48%. It reveals the degradation pathways of a wide range of state‐of‐the‐art nonfullerene acceptors from molecular to aggregation level. The structural confinement and molecular ordering are responsible for molecular conformational stability under illumination. The origin of increased nonradiative decay under illumination is predominantly in the aggregated states with strong intermolecular interactions while the intramolecular exciton dynamics are stable.</description><subject>4‐T tandem solar cells</subject><subject>Circuits</subject><subject>Crystal defects</subject><subject>Crystallization</subject><subject>crystallization regulation</subject><subject>defect passivation</subject><subject>Efficiency</subject><subject>Energy gap</subject><subject>Hydrogen bonds</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Solar cells</subject><subject>Triethanolamine</subject><subject>VOC deficit</subject><subject>wide‐bandgap perovskite</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkE9Lw0AQxYMoWGqvnhfEY-r-S5oca6xaqFq04HHZZGfr1jSpu2lLPHnz6mf0k5gSqUfnMo_h_d7A87xTgvsEY3ohoVj2KaYMM8b5gdchIeF-GHF8uNeMHns95xa4GR6TxtnxPhNbu0rmuXmXlSkL9Ajzdd5KWSh0BRqyCk2lc2bTnnVp0UhrkxkoKjQuNmArUOjZKPj--LpsqLlcoSnYcuNeTQXoqcylRQnkuUNbU72gskEQJef7mKw-8Y60zB30fnfXm12PZsmtP3m4GSfDiZ-xYMB9nQ4UAaY1DpSOpA7iUKVcpopCGmqGUyWDONAk4pJTAmpAFeEs5DLTaRaErOudtbErW76twVViUa5t0XwUNG4oFsQ4alz91pXZ0jkLWqysWUpbC4LFrm6xq1vs626AuAW2Jof6H7cYju7v_tgfGyqHYw</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Su, Gangfeng</creator><creator>Yu, Runnan</creator><creator>Dong, Yiman</creator><creator>He, Zhangwei</creator><creator>Zhang, Yuling</creator><creator>Wang, Ruyue</creator><creator>Dang, Qi</creator><creator>Sha, Shihao</creator><creator>Lv, Qianglong</creator><creator>Xu, Zhiyang</creator><creator>Liu, Zhuoxu</creator><creator>Li, Minghua</creator><creator>Tan, Zhan'ao</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2700-4725</orcidid></search><sort><creationdate>20240101</creationdate><title>Crystallization Regulation and Defect Passivation for Efficient Inverted Wide‐Bandgap Perovskite Solar Cells with over 21% Efficiency</title><author>Su, Gangfeng ; Yu, Runnan ; Dong, Yiman ; He, Zhangwei ; Zhang, Yuling ; Wang, Ruyue ; Dang, Qi ; Sha, Shihao ; Lv, Qianglong ; Xu, Zhiyang ; Liu, Zhuoxu ; Li, Minghua ; Tan, Zhan'ao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3574-fb7d1e3ff05df8af596db4abd2eb6f30bda595f184a421ed72d14364acfbc563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>4‐T tandem solar cells</topic><topic>Circuits</topic><topic>Crystal defects</topic><topic>Crystallization</topic><topic>crystallization regulation</topic><topic>defect passivation</topic><topic>Efficiency</topic><topic>Energy gap</topic><topic>Hydrogen bonds</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Solar cells</topic><topic>Triethanolamine</topic><topic>VOC deficit</topic><topic>wide‐bandgap perovskite</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Su, Gangfeng</creatorcontrib><creatorcontrib>Yu, Runnan</creatorcontrib><creatorcontrib>Dong, Yiman</creatorcontrib><creatorcontrib>He, Zhangwei</creatorcontrib><creatorcontrib>Zhang, Yuling</creatorcontrib><creatorcontrib>Wang, Ruyue</creatorcontrib><creatorcontrib>Dang, Qi</creatorcontrib><creatorcontrib>Sha, Shihao</creatorcontrib><creatorcontrib>Lv, Qianglong</creatorcontrib><creatorcontrib>Xu, Zhiyang</creatorcontrib><creatorcontrib>Liu, Zhuoxu</creatorcontrib><creatorcontrib>Li, Minghua</creatorcontrib><creatorcontrib>Tan, Zhan'ao</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Su, Gangfeng</au><au>Yu, Runnan</au><au>Dong, Yiman</au><au>He, Zhangwei</au><au>Zhang, Yuling</au><au>Wang, Ruyue</au><au>Dang, Qi</au><au>Sha, Shihao</au><au>Lv, Qianglong</au><au>Xu, Zhiyang</au><au>Liu, Zhuoxu</au><au>Li, Minghua</au><au>Tan, Zhan'ao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crystallization Regulation and Defect Passivation for Efficient Inverted Wide‐Bandgap Perovskite Solar Cells with over 21% Efficiency</atitle><jtitle>Advanced energy materials</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>14</volume><issue>4</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Wide‐bandgap (WBG) perovskite solar cells (PSCs) have drawn great attention owing to their promising potential for constructing efficient tandem solar cells. However, the rapid crystallization results in poor film properties and easy formation of defects, thereby greatly restricting the acquisition of a small open‐circuit voltage (VOC) deficit due to the severe nonradiative recombination. Herein, it introduced the triethanolamine borate (TB) to effectively slow down the rapid crystallization for preparing highly crystalline and uniform WBG perovskite films with reduced defects. The strong intermolecular interaction (e.g., coordination and hydrogen bond) between TB and perovskite can suppress the halide vacancy formation and inhibit phase segregation for improving long‐term stability. The devices based on a 1.65 eV perovskite absorber achieved a high efficiency of 21.55% with a VOC of 1.24 V, demonstrating the VOC deficit is as low as 0.41 V, which is one of the lowest reports. By combining a semitransparent WBG subcell with a narrow‐bandgap tin‐based PSC, the four‐terminal tandem solar cell delivers a high efficiency of 26.48%. It reveals the degradation pathways of a wide range of state‐of‐the‐art nonfullerene acceptors from molecular to aggregation level. The structural confinement and molecular ordering are responsible for molecular conformational stability under illumination. The origin of increased nonradiative decay under illumination is predominantly in the aggregated states with strong intermolecular interactions while the intramolecular exciton dynamics are stable.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202303344</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2700-4725</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2024-01, Vol.14 (4), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_2918435908
source Wiley Online Library Journals Frontfile Complete
subjects 4‐T tandem solar cells
Circuits
Crystal defects
Crystallization
crystallization regulation
defect passivation
Efficiency
Energy gap
Hydrogen bonds
Perovskites
Photovoltaic cells
Solar cells
Triethanolamine
VOC deficit
wide‐bandgap perovskite
title Crystallization Regulation and Defect Passivation for Efficient Inverted Wide‐Bandgap Perovskite Solar Cells with over 21% Efficiency
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T20%3A06%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crystallization%20Regulation%20and%20Defect%20Passivation%20for%20Efficient%20Inverted%20Wide%E2%80%90Bandgap%20Perovskite%20Solar%20Cells%20with%20over%2021%25%20Efficiency&rft.jtitle=Advanced%20energy%20materials&rft.au=Su,%20Gangfeng&rft.date=2024-01-01&rft.volume=14&rft.issue=4&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202303344&rft_dat=%3Cproquest_cross%3E2918435908%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918435908&rft_id=info:pmid/&rfr_iscdi=true