Autoregressive Power Spectrum-Based Covariance Matrix Reconstruction for Robust Adaptive Beamforming

In this paper, a new robust adaptive beamforming method based on the autoregressive (AR) power spectrum is proposed. To improve the robustness of the Capon spectrum, the AR model is applied to realize the desired signal power and interference power estimations, which are used to reconstruct the cova...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Circuits, systems, and signal processing systems, and signal processing, 2024-02, Vol.43 (2), p.1157-1174
Hauptverfasser: Yang, Huichao, Dong, Linjie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1174
container_issue 2
container_start_page 1157
container_title Circuits, systems, and signal processing
container_volume 43
creator Yang, Huichao
Dong, Linjie
description In this paper, a new robust adaptive beamforming method based on the autoregressive (AR) power spectrum is proposed. To improve the robustness of the Capon spectrum, the AR model is applied to realize the desired signal power and interference power estimations, which are used to reconstruct the covariance matrix. Besides, the eigenvalue decomposition is used to remove the redundancy of the reconstructed interference-plus-noise covariance matrix, where the number of interferences is confirmed by the maximum ratio index of the adjacent eigenvalues. Numerical simulations highlight that the proposed method is more robust against some common errors compared with several beamformers.
doi_str_mv 10.1007/s00034-023-02508-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918366521</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918366521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-c2025b1742e51f92a503bdb4f9e861c614bfcad892a2db06e16ca7aa91c6c9b63</originalsourceid><addsrcrecordid>eNp9UEtLxDAQDqLguvoHPAU8VyfpKz3uLr5gRVkVvIU0nS5dbFOTdF3_vVkrePMwMzDfY4aPkHMGlwwgv3IAECcR8DhUCiLaHZAJS2MWpSIXh2QCPBcRCPZ2TE6c2wCwIin4hFSzwRuLa4vONVukT-YTLX3uUXs7tNFcOazowmyVbVSnkT4ob5sdXaE2nQsU7RvT0dpYujLl4DydVar3e6c5qjbs26Zbn5KjWr07PPudU_J6c_2yuIuWj7f3i9ky0jwHH3r4vWR5wjFldcFVCnFZlUldoMiYzlhS1lpVIiC8KiFDlmmVK1UETBdlFk_JxejbW_MxoPNyYwbbhZOSF0zEWZZyFlh8ZGlrnLNYy942rbJfkoHcpynHNGVIU_6kKXdBFI8iF8jdGu2f9T-qb6amel0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918366521</pqid></control><display><type>article</type><title>Autoregressive Power Spectrum-Based Covariance Matrix Reconstruction for Robust Adaptive Beamforming</title><source>SpringerNature Journals</source><creator>Yang, Huichao ; Dong, Linjie</creator><creatorcontrib>Yang, Huichao ; Dong, Linjie</creatorcontrib><description>In this paper, a new robust adaptive beamforming method based on the autoregressive (AR) power spectrum is proposed. To improve the robustness of the Capon spectrum, the AR model is applied to realize the desired signal power and interference power estimations, which are used to reconstruct the covariance matrix. Besides, the eigenvalue decomposition is used to remove the redundancy of the reconstructed interference-plus-noise covariance matrix, where the number of interferences is confirmed by the maximum ratio index of the adjacent eigenvalues. Numerical simulations highlight that the proposed method is more robust against some common errors compared with several beamformers.</description><identifier>ISSN: 0278-081X</identifier><identifier>EISSN: 1531-5878</identifier><identifier>DOI: 10.1007/s00034-023-02508-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Arrays ; Autoregressive processes ; Beamforming ; Circuits and Systems ; Convex analysis ; Covariance matrix ; Decomposition ; Eigenvalues ; Electrical Engineering ; Electronics and Microelectronics ; Engineering ; Instrumentation ; Interference ; Mathematical models ; Methods ; Optimization ; Redundancy ; Robustness (mathematics) ; Sensors ; Signal processing ; Signal,Image and Speech Processing</subject><ispartof>Circuits, systems, and signal processing, 2024-02, Vol.43 (2), p.1157-1174</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-c2025b1742e51f92a503bdb4f9e861c614bfcad892a2db06e16ca7aa91c6c9b63</cites><orcidid>0000-0002-2995-2000</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00034-023-02508-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00034-023-02508-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Yang, Huichao</creatorcontrib><creatorcontrib>Dong, Linjie</creatorcontrib><title>Autoregressive Power Spectrum-Based Covariance Matrix Reconstruction for Robust Adaptive Beamforming</title><title>Circuits, systems, and signal processing</title><addtitle>Circuits Syst Signal Process</addtitle><description>In this paper, a new robust adaptive beamforming method based on the autoregressive (AR) power spectrum is proposed. To improve the robustness of the Capon spectrum, the AR model is applied to realize the desired signal power and interference power estimations, which are used to reconstruct the covariance matrix. Besides, the eigenvalue decomposition is used to remove the redundancy of the reconstructed interference-plus-noise covariance matrix, where the number of interferences is confirmed by the maximum ratio index of the adjacent eigenvalues. Numerical simulations highlight that the proposed method is more robust against some common errors compared with several beamformers.</description><subject>Arrays</subject><subject>Autoregressive processes</subject><subject>Beamforming</subject><subject>Circuits and Systems</subject><subject>Convex analysis</subject><subject>Covariance matrix</subject><subject>Decomposition</subject><subject>Eigenvalues</subject><subject>Electrical Engineering</subject><subject>Electronics and Microelectronics</subject><subject>Engineering</subject><subject>Instrumentation</subject><subject>Interference</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Optimization</subject><subject>Redundancy</subject><subject>Robustness (mathematics)</subject><subject>Sensors</subject><subject>Signal processing</subject><subject>Signal,Image and Speech Processing</subject><issn>0278-081X</issn><issn>1531-5878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UEtLxDAQDqLguvoHPAU8VyfpKz3uLr5gRVkVvIU0nS5dbFOTdF3_vVkrePMwMzDfY4aPkHMGlwwgv3IAECcR8DhUCiLaHZAJS2MWpSIXh2QCPBcRCPZ2TE6c2wCwIin4hFSzwRuLa4vONVukT-YTLX3uUXs7tNFcOazowmyVbVSnkT4ob5sdXaE2nQsU7RvT0dpYujLl4DydVar3e6c5qjbs26Zbn5KjWr07PPudU_J6c_2yuIuWj7f3i9ky0jwHH3r4vWR5wjFldcFVCnFZlUldoMiYzlhS1lpVIiC8KiFDlmmVK1UETBdlFk_JxejbW_MxoPNyYwbbhZOSF0zEWZZyFlh8ZGlrnLNYy942rbJfkoHcpynHNGVIU_6kKXdBFI8iF8jdGu2f9T-qb6amel0</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Yang, Huichao</creator><creator>Dong, Linjie</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2995-2000</orcidid></search><sort><creationdate>20240201</creationdate><title>Autoregressive Power Spectrum-Based Covariance Matrix Reconstruction for Robust Adaptive Beamforming</title><author>Yang, Huichao ; Dong, Linjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-c2025b1742e51f92a503bdb4f9e861c614bfcad892a2db06e16ca7aa91c6c9b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Arrays</topic><topic>Autoregressive processes</topic><topic>Beamforming</topic><topic>Circuits and Systems</topic><topic>Convex analysis</topic><topic>Covariance matrix</topic><topic>Decomposition</topic><topic>Eigenvalues</topic><topic>Electrical Engineering</topic><topic>Electronics and Microelectronics</topic><topic>Engineering</topic><topic>Instrumentation</topic><topic>Interference</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Optimization</topic><topic>Redundancy</topic><topic>Robustness (mathematics)</topic><topic>Sensors</topic><topic>Signal processing</topic><topic>Signal,Image and Speech Processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Huichao</creatorcontrib><creatorcontrib>Dong, Linjie</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Circuits, systems, and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Huichao</au><au>Dong, Linjie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Autoregressive Power Spectrum-Based Covariance Matrix Reconstruction for Robust Adaptive Beamforming</atitle><jtitle>Circuits, systems, and signal processing</jtitle><stitle>Circuits Syst Signal Process</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>43</volume><issue>2</issue><spage>1157</spage><epage>1174</epage><pages>1157-1174</pages><issn>0278-081X</issn><eissn>1531-5878</eissn><abstract>In this paper, a new robust adaptive beamforming method based on the autoregressive (AR) power spectrum is proposed. To improve the robustness of the Capon spectrum, the AR model is applied to realize the desired signal power and interference power estimations, which are used to reconstruct the covariance matrix. Besides, the eigenvalue decomposition is used to remove the redundancy of the reconstructed interference-plus-noise covariance matrix, where the number of interferences is confirmed by the maximum ratio index of the adjacent eigenvalues. Numerical simulations highlight that the proposed method is more robust against some common errors compared with several beamformers.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00034-023-02508-x</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-2995-2000</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0278-081X
ispartof Circuits, systems, and signal processing, 2024-02, Vol.43 (2), p.1157-1174
issn 0278-081X
1531-5878
language eng
recordid cdi_proquest_journals_2918366521
source SpringerNature Journals
subjects Arrays
Autoregressive processes
Beamforming
Circuits and Systems
Convex analysis
Covariance matrix
Decomposition
Eigenvalues
Electrical Engineering
Electronics and Microelectronics
Engineering
Instrumentation
Interference
Mathematical models
Methods
Optimization
Redundancy
Robustness (mathematics)
Sensors
Signal processing
Signal,Image and Speech Processing
title Autoregressive Power Spectrum-Based Covariance Matrix Reconstruction for Robust Adaptive Beamforming
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T12%3A54%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Autoregressive%20Power%20Spectrum-Based%20Covariance%20Matrix%20Reconstruction%20for%20Robust%20Adaptive%20Beamforming&rft.jtitle=Circuits,%20systems,%20and%20signal%20processing&rft.au=Yang,%20Huichao&rft.date=2024-02-01&rft.volume=43&rft.issue=2&rft.spage=1157&rft.epage=1174&rft.pages=1157-1174&rft.issn=0278-081X&rft.eissn=1531-5878&rft_id=info:doi/10.1007/s00034-023-02508-x&rft_dat=%3Cproquest_cross%3E2918366521%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918366521&rft_id=info:pmid/&rfr_iscdi=true