Autoregressive Power Spectrum-Based Covariance Matrix Reconstruction for Robust Adaptive Beamforming
In this paper, a new robust adaptive beamforming method based on the autoregressive (AR) power spectrum is proposed. To improve the robustness of the Capon spectrum, the AR model is applied to realize the desired signal power and interference power estimations, which are used to reconstruct the cova...
Gespeichert in:
Veröffentlicht in: | Circuits, systems, and signal processing systems, and signal processing, 2024-02, Vol.43 (2), p.1157-1174 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1174 |
---|---|
container_issue | 2 |
container_start_page | 1157 |
container_title | Circuits, systems, and signal processing |
container_volume | 43 |
creator | Yang, Huichao Dong, Linjie |
description | In this paper, a new robust adaptive beamforming method based on the autoregressive (AR) power spectrum is proposed. To improve the robustness of the Capon spectrum, the AR model is applied to realize the desired signal power and interference power estimations, which are used to reconstruct the covariance matrix. Besides, the eigenvalue decomposition is used to remove the redundancy of the reconstructed interference-plus-noise covariance matrix, where the number of interferences is confirmed by the maximum ratio index of the adjacent eigenvalues. Numerical simulations highlight that the proposed method is more robust against some common errors compared with several beamformers. |
doi_str_mv | 10.1007/s00034-023-02508-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918366521</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918366521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-c2025b1742e51f92a503bdb4f9e861c614bfcad892a2db06e16ca7aa91c6c9b63</originalsourceid><addsrcrecordid>eNp9UEtLxDAQDqLguvoHPAU8VyfpKz3uLr5gRVkVvIU0nS5dbFOTdF3_vVkrePMwMzDfY4aPkHMGlwwgv3IAECcR8DhUCiLaHZAJS2MWpSIXh2QCPBcRCPZ2TE6c2wCwIin4hFSzwRuLa4vONVukT-YTLX3uUXs7tNFcOazowmyVbVSnkT4ob5sdXaE2nQsU7RvT0dpYujLl4DydVar3e6c5qjbs26Zbn5KjWr07PPudU_J6c_2yuIuWj7f3i9ky0jwHH3r4vWR5wjFldcFVCnFZlUldoMiYzlhS1lpVIiC8KiFDlmmVK1UETBdlFk_JxejbW_MxoPNyYwbbhZOSF0zEWZZyFlh8ZGlrnLNYy942rbJfkoHcpynHNGVIU_6kKXdBFI8iF8jdGu2f9T-qb6amel0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918366521</pqid></control><display><type>article</type><title>Autoregressive Power Spectrum-Based Covariance Matrix Reconstruction for Robust Adaptive Beamforming</title><source>SpringerNature Journals</source><creator>Yang, Huichao ; Dong, Linjie</creator><creatorcontrib>Yang, Huichao ; Dong, Linjie</creatorcontrib><description>In this paper, a new robust adaptive beamforming method based on the autoregressive (AR) power spectrum is proposed. To improve the robustness of the Capon spectrum, the AR model is applied to realize the desired signal power and interference power estimations, which are used to reconstruct the covariance matrix. Besides, the eigenvalue decomposition is used to remove the redundancy of the reconstructed interference-plus-noise covariance matrix, where the number of interferences is confirmed by the maximum ratio index of the adjacent eigenvalues. Numerical simulations highlight that the proposed method is more robust against some common errors compared with several beamformers.</description><identifier>ISSN: 0278-081X</identifier><identifier>EISSN: 1531-5878</identifier><identifier>DOI: 10.1007/s00034-023-02508-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Arrays ; Autoregressive processes ; Beamforming ; Circuits and Systems ; Convex analysis ; Covariance matrix ; Decomposition ; Eigenvalues ; Electrical Engineering ; Electronics and Microelectronics ; Engineering ; Instrumentation ; Interference ; Mathematical models ; Methods ; Optimization ; Redundancy ; Robustness (mathematics) ; Sensors ; Signal processing ; Signal,Image and Speech Processing</subject><ispartof>Circuits, systems, and signal processing, 2024-02, Vol.43 (2), p.1157-1174</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-c2025b1742e51f92a503bdb4f9e861c614bfcad892a2db06e16ca7aa91c6c9b63</cites><orcidid>0000-0002-2995-2000</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00034-023-02508-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00034-023-02508-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Yang, Huichao</creatorcontrib><creatorcontrib>Dong, Linjie</creatorcontrib><title>Autoregressive Power Spectrum-Based Covariance Matrix Reconstruction for Robust Adaptive Beamforming</title><title>Circuits, systems, and signal processing</title><addtitle>Circuits Syst Signal Process</addtitle><description>In this paper, a new robust adaptive beamforming method based on the autoregressive (AR) power spectrum is proposed. To improve the robustness of the Capon spectrum, the AR model is applied to realize the desired signal power and interference power estimations, which are used to reconstruct the covariance matrix. Besides, the eigenvalue decomposition is used to remove the redundancy of the reconstructed interference-plus-noise covariance matrix, where the number of interferences is confirmed by the maximum ratio index of the adjacent eigenvalues. Numerical simulations highlight that the proposed method is more robust against some common errors compared with several beamformers.</description><subject>Arrays</subject><subject>Autoregressive processes</subject><subject>Beamforming</subject><subject>Circuits and Systems</subject><subject>Convex analysis</subject><subject>Covariance matrix</subject><subject>Decomposition</subject><subject>Eigenvalues</subject><subject>Electrical Engineering</subject><subject>Electronics and Microelectronics</subject><subject>Engineering</subject><subject>Instrumentation</subject><subject>Interference</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Optimization</subject><subject>Redundancy</subject><subject>Robustness (mathematics)</subject><subject>Sensors</subject><subject>Signal processing</subject><subject>Signal,Image and Speech Processing</subject><issn>0278-081X</issn><issn>1531-5878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UEtLxDAQDqLguvoHPAU8VyfpKz3uLr5gRVkVvIU0nS5dbFOTdF3_vVkrePMwMzDfY4aPkHMGlwwgv3IAECcR8DhUCiLaHZAJS2MWpSIXh2QCPBcRCPZ2TE6c2wCwIin4hFSzwRuLa4vONVukT-YTLX3uUXs7tNFcOazowmyVbVSnkT4ob5sdXaE2nQsU7RvT0dpYujLl4DydVar3e6c5qjbs26Zbn5KjWr07PPudU_J6c_2yuIuWj7f3i9ky0jwHH3r4vWR5wjFldcFVCnFZlUldoMiYzlhS1lpVIiC8KiFDlmmVK1UETBdlFk_JxejbW_MxoPNyYwbbhZOSF0zEWZZyFlh8ZGlrnLNYy942rbJfkoHcpynHNGVIU_6kKXdBFI8iF8jdGu2f9T-qb6amel0</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Yang, Huichao</creator><creator>Dong, Linjie</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2995-2000</orcidid></search><sort><creationdate>20240201</creationdate><title>Autoregressive Power Spectrum-Based Covariance Matrix Reconstruction for Robust Adaptive Beamforming</title><author>Yang, Huichao ; Dong, Linjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-c2025b1742e51f92a503bdb4f9e861c614bfcad892a2db06e16ca7aa91c6c9b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Arrays</topic><topic>Autoregressive processes</topic><topic>Beamforming</topic><topic>Circuits and Systems</topic><topic>Convex analysis</topic><topic>Covariance matrix</topic><topic>Decomposition</topic><topic>Eigenvalues</topic><topic>Electrical Engineering</topic><topic>Electronics and Microelectronics</topic><topic>Engineering</topic><topic>Instrumentation</topic><topic>Interference</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Optimization</topic><topic>Redundancy</topic><topic>Robustness (mathematics)</topic><topic>Sensors</topic><topic>Signal processing</topic><topic>Signal,Image and Speech Processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Huichao</creatorcontrib><creatorcontrib>Dong, Linjie</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Circuits, systems, and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Huichao</au><au>Dong, Linjie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Autoregressive Power Spectrum-Based Covariance Matrix Reconstruction for Robust Adaptive Beamforming</atitle><jtitle>Circuits, systems, and signal processing</jtitle><stitle>Circuits Syst Signal Process</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>43</volume><issue>2</issue><spage>1157</spage><epage>1174</epage><pages>1157-1174</pages><issn>0278-081X</issn><eissn>1531-5878</eissn><abstract>In this paper, a new robust adaptive beamforming method based on the autoregressive (AR) power spectrum is proposed. To improve the robustness of the Capon spectrum, the AR model is applied to realize the desired signal power and interference power estimations, which are used to reconstruct the covariance matrix. Besides, the eigenvalue decomposition is used to remove the redundancy of the reconstructed interference-plus-noise covariance matrix, where the number of interferences is confirmed by the maximum ratio index of the adjacent eigenvalues. Numerical simulations highlight that the proposed method is more robust against some common errors compared with several beamformers.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00034-023-02508-x</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-2995-2000</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-081X |
ispartof | Circuits, systems, and signal processing, 2024-02, Vol.43 (2), p.1157-1174 |
issn | 0278-081X 1531-5878 |
language | eng |
recordid | cdi_proquest_journals_2918366521 |
source | SpringerNature Journals |
subjects | Arrays Autoregressive processes Beamforming Circuits and Systems Convex analysis Covariance matrix Decomposition Eigenvalues Electrical Engineering Electronics and Microelectronics Engineering Instrumentation Interference Mathematical models Methods Optimization Redundancy Robustness (mathematics) Sensors Signal processing Signal,Image and Speech Processing |
title | Autoregressive Power Spectrum-Based Covariance Matrix Reconstruction for Robust Adaptive Beamforming |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T12%3A54%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Autoregressive%20Power%20Spectrum-Based%20Covariance%20Matrix%20Reconstruction%20for%20Robust%20Adaptive%20Beamforming&rft.jtitle=Circuits,%20systems,%20and%20signal%20processing&rft.au=Yang,%20Huichao&rft.date=2024-02-01&rft.volume=43&rft.issue=2&rft.spage=1157&rft.epage=1174&rft.pages=1157-1174&rft.issn=0278-081X&rft.eissn=1531-5878&rft_id=info:doi/10.1007/s00034-023-02508-x&rft_dat=%3Cproquest_cross%3E2918366521%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918366521&rft_id=info:pmid/&rfr_iscdi=true |