Multistability of Quaternion-Valued Recurrent Neural Networks with Discontinuous Nonmonotonic Piecewise Nonlinear Activation Functions

In this article, the coexistence and dynamical behaviors of multiple equilibrium points for quaternion-valued neural networks (QVNNs) are investigated, whose activation functions are discontinuous and nonmonotonic piecewise nonlinear. According to the Hamilton rules, the QVNNs can be divided into fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural processing letters 2023-10, Vol.55 (5), p.5855-5884
Hauptverfasser: Du, Weihao, Xiang, Jianglian, Tan, Manchun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5884
container_issue 5
container_start_page 5855
container_title Neural processing letters
container_volume 55
creator Du, Weihao
Xiang, Jianglian
Tan, Manchun
description In this article, the coexistence and dynamical behaviors of multiple equilibrium points for quaternion-valued neural networks (QVNNs) are investigated, whose activation functions are discontinuous and nonmonotonic piecewise nonlinear. According to the Hamilton rules, the QVNNs can be divided into four real-valued parts. By utilizing the Brouwer’s Fixed Point Theorem and property of strictly diagonally dominant matrices, some sufficient conditions are derived to ensure that the QVNNs have at least 5 4 n equilibrium points, 3 4 n of them are locally exponentially stable, and the others are unstable. It is shown that the number of stable equilibria in QVNNs is more than that in the real-valued ones. Finally, a numerical simulation is presented to clarify the theoretical analysis is valid.
doi_str_mv 10.1007/s11063-022-11116-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918349582</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918349582</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-2728aee3b5e1288321a087efc8a3602e15867cfe39d8b2860062cb7efb440afe3</originalsourceid><addsrcrecordid>eNp9UMtKQzEUvIiCtfoDrgKuo3m0N-my-AbfqLgLuem5mnpNNA8v_QG_29QK7jybGYaZOTBVtUvJPiVEHERKSc0xYQzTcjXu16oBHQuOheBP64VzQfCoZnSz2opxTkiJMTKovi5zl2xMurGdTQvkW3SbdYLgrHf4UXcZZugOTA4BXEJXkIPuCqTeh9eIepte0JGNxrtkXfY5oivv3rzzyTtr0I0FA72NsJQ760AHNDXJfupU-tFJdmZJ4na10eouws4vDquHk-P7wzN8cX16fji9wIYJkjATTGoA3oyBMik5o5pIAa2RmteEAR3LWpgW-GQmGyZrQmpmmmJoRiOiiz6s9la978F_ZIhJzX0OrrxUbEIlH03GkhUXW7lM8DEGaNV7sG86LBQlarm3Wu2tyt7qZ2_VlxBfhWIxu2cIf9X_pL4BWP2Hfw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918349582</pqid></control><display><type>article</type><title>Multistability of Quaternion-Valued Recurrent Neural Networks with Discontinuous Nonmonotonic Piecewise Nonlinear Activation Functions</title><source>SpringerLink Journals</source><source>ProQuest Central</source><creator>Du, Weihao ; Xiang, Jianglian ; Tan, Manchun</creator><creatorcontrib>Du, Weihao ; Xiang, Jianglian ; Tan, Manchun</creatorcontrib><description>In this article, the coexistence and dynamical behaviors of multiple equilibrium points for quaternion-valued neural networks (QVNNs) are investigated, whose activation functions are discontinuous and nonmonotonic piecewise nonlinear. According to the Hamilton rules, the QVNNs can be divided into four real-valued parts. By utilizing the Brouwer’s Fixed Point Theorem and property of strictly diagonally dominant matrices, some sufficient conditions are derived to ensure that the QVNNs have at least 5 4 n equilibrium points, 3 4 n of them are locally exponentially stable, and the others are unstable. It is shown that the number of stable equilibria in QVNNs is more than that in the real-valued ones. Finally, a numerical simulation is presented to clarify the theoretical analysis is valid.</description><identifier>ISSN: 1370-4621</identifier><identifier>EISSN: 1573-773X</identifier><identifier>DOI: 10.1007/s11063-022-11116-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial Intelligence ; Complex Systems ; Computational Intelligence ; Computer Science ; Eigenvalues ; Equilibrium ; Fixed points (mathematics) ; Mathematical functions ; Neural networks ; Quaternions ; Recurrent neural networks</subject><ispartof>Neural processing letters, 2023-10, Vol.55 (5), p.5855-5884</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-2728aee3b5e1288321a087efc8a3602e15867cfe39d8b2860062cb7efb440afe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11063-022-11116-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918349582?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Du, Weihao</creatorcontrib><creatorcontrib>Xiang, Jianglian</creatorcontrib><creatorcontrib>Tan, Manchun</creatorcontrib><title>Multistability of Quaternion-Valued Recurrent Neural Networks with Discontinuous Nonmonotonic Piecewise Nonlinear Activation Functions</title><title>Neural processing letters</title><addtitle>Neural Process Lett</addtitle><description>In this article, the coexistence and dynamical behaviors of multiple equilibrium points for quaternion-valued neural networks (QVNNs) are investigated, whose activation functions are discontinuous and nonmonotonic piecewise nonlinear. According to the Hamilton rules, the QVNNs can be divided into four real-valued parts. By utilizing the Brouwer’s Fixed Point Theorem and property of strictly diagonally dominant matrices, some sufficient conditions are derived to ensure that the QVNNs have at least 5 4 n equilibrium points, 3 4 n of them are locally exponentially stable, and the others are unstable. It is shown that the number of stable equilibria in QVNNs is more than that in the real-valued ones. Finally, a numerical simulation is presented to clarify the theoretical analysis is valid.</description><subject>Artificial Intelligence</subject><subject>Complex Systems</subject><subject>Computational Intelligence</subject><subject>Computer Science</subject><subject>Eigenvalues</subject><subject>Equilibrium</subject><subject>Fixed points (mathematics)</subject><subject>Mathematical functions</subject><subject>Neural networks</subject><subject>Quaternions</subject><subject>Recurrent neural networks</subject><issn>1370-4621</issn><issn>1573-773X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9UMtKQzEUvIiCtfoDrgKuo3m0N-my-AbfqLgLuem5mnpNNA8v_QG_29QK7jybGYaZOTBVtUvJPiVEHERKSc0xYQzTcjXu16oBHQuOheBP64VzQfCoZnSz2opxTkiJMTKovi5zl2xMurGdTQvkW3SbdYLgrHf4UXcZZugOTA4BXEJXkIPuCqTeh9eIepte0JGNxrtkXfY5oivv3rzzyTtr0I0FA72NsJQ760AHNDXJfupU-tFJdmZJ4na10eouws4vDquHk-P7wzN8cX16fji9wIYJkjATTGoA3oyBMik5o5pIAa2RmteEAR3LWpgW-GQmGyZrQmpmmmJoRiOiiz6s9la978F_ZIhJzX0OrrxUbEIlH03GkhUXW7lM8DEGaNV7sG86LBQlarm3Wu2tyt7qZ2_VlxBfhWIxu2cIf9X_pL4BWP2Hfw</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Du, Weihao</creator><creator>Xiang, Jianglian</creator><creator>Tan, Manchun</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope></search><sort><creationdate>20231001</creationdate><title>Multistability of Quaternion-Valued Recurrent Neural Networks with Discontinuous Nonmonotonic Piecewise Nonlinear Activation Functions</title><author>Du, Weihao ; Xiang, Jianglian ; Tan, Manchun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-2728aee3b5e1288321a087efc8a3602e15867cfe39d8b2860062cb7efb440afe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial Intelligence</topic><topic>Complex Systems</topic><topic>Computational Intelligence</topic><topic>Computer Science</topic><topic>Eigenvalues</topic><topic>Equilibrium</topic><topic>Fixed points (mathematics)</topic><topic>Mathematical functions</topic><topic>Neural networks</topic><topic>Quaternions</topic><topic>Recurrent neural networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, Weihao</creatorcontrib><creatorcontrib>Xiang, Jianglian</creatorcontrib><creatorcontrib>Tan, Manchun</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><jtitle>Neural processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Du, Weihao</au><au>Xiang, Jianglian</au><au>Tan, Manchun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multistability of Quaternion-Valued Recurrent Neural Networks with Discontinuous Nonmonotonic Piecewise Nonlinear Activation Functions</atitle><jtitle>Neural processing letters</jtitle><stitle>Neural Process Lett</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>55</volume><issue>5</issue><spage>5855</spage><epage>5884</epage><pages>5855-5884</pages><issn>1370-4621</issn><eissn>1573-773X</eissn><abstract>In this article, the coexistence and dynamical behaviors of multiple equilibrium points for quaternion-valued neural networks (QVNNs) are investigated, whose activation functions are discontinuous and nonmonotonic piecewise nonlinear. According to the Hamilton rules, the QVNNs can be divided into four real-valued parts. By utilizing the Brouwer’s Fixed Point Theorem and property of strictly diagonally dominant matrices, some sufficient conditions are derived to ensure that the QVNNs have at least 5 4 n equilibrium points, 3 4 n of them are locally exponentially stable, and the others are unstable. It is shown that the number of stable equilibria in QVNNs is more than that in the real-valued ones. Finally, a numerical simulation is presented to clarify the theoretical analysis is valid.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11063-022-11116-w</doi><tpages>30</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1370-4621
ispartof Neural processing letters, 2023-10, Vol.55 (5), p.5855-5884
issn 1370-4621
1573-773X
language eng
recordid cdi_proquest_journals_2918349582
source SpringerLink Journals; ProQuest Central
subjects Artificial Intelligence
Complex Systems
Computational Intelligence
Computer Science
Eigenvalues
Equilibrium
Fixed points (mathematics)
Mathematical functions
Neural networks
Quaternions
Recurrent neural networks
title Multistability of Quaternion-Valued Recurrent Neural Networks with Discontinuous Nonmonotonic Piecewise Nonlinear Activation Functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T13%3A47%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multistability%20of%20Quaternion-Valued%20Recurrent%20Neural%20Networks%20with%20Discontinuous%20Nonmonotonic%20Piecewise%20Nonlinear%20Activation%20Functions&rft.jtitle=Neural%20processing%20letters&rft.au=Du,%20Weihao&rft.date=2023-10-01&rft.volume=55&rft.issue=5&rft.spage=5855&rft.epage=5884&rft.pages=5855-5884&rft.issn=1370-4621&rft.eissn=1573-773X&rft_id=info:doi/10.1007/s11063-022-11116-w&rft_dat=%3Cproquest_cross%3E2918349582%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918349582&rft_id=info:pmid/&rfr_iscdi=true