EFRNet: Efficient Feature Reuse Network for Real-time Semantic Segmentation

Semantic segmentation is a kind of dense prediction task, which has high requirements on the prediction accuracy and inference speed in mobile terminals. To reduce the computational burden of the segmentation network and supplement the missing spatial information of high-level features, an efficient...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural processing letters 2022-12, Vol.54 (6), p.4647-4659
Hauptverfasser: Li, Yaqian, Li, Moran, Li, Zhongliang, Xiao, Cunjun, Li, Haibin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4659
container_issue 6
container_start_page 4647
container_title Neural processing letters
container_volume 54
creator Li, Yaqian
Li, Moran
Li, Zhongliang
Xiao, Cunjun
Li, Haibin
description Semantic segmentation is a kind of dense prediction task, which has high requirements on the prediction accuracy and inference speed in mobile terminals. To reduce the computational burden of the segmentation network and supplement the missing spatial information of high-level features, an efficient feature reuse network (EFRNet) is proposed in two steps: a Multi-scale Bottleneck module is designed to extract multi-scale features, and a lightweight backbone is designed based on the MB module; then, features of different depths are integrated through efficient feature reuse model. Experiments on Cityscapes datasets demonstrate that the proposed EFRNet achieves an impressive balance between speed and precision. Specifically, without any pre-trained model and post-processing, it achieves 75.58% Mean IoU on the Cityscapes test dataset with the speed of 118 FPS on a single RTX 2080Ti GPU.
doi_str_mv 10.1007/s11063-022-10740-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918349396</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918349396</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-8582e5a3f6a2e45b1452ea9c85297c8ea299a03452352a173f0e0fbc9ee0ec493</originalsourceid><addsrcrecordid>eNp9kEFLxDAQhYMouK7-AU8Fz9FJ0jaNN1l2VVwUVgVvIRsmS9dtuyYpxX9vtII3T_OYed8beIScM7hkAPIqMAaloMA5ZSBzoMMBmbBCCiqleDtMWkigecnZMTkJYQuQMA4T8jBfrB4xXmdz52pbYxuzBZrYe8xW2AfM0nHo_HvmOp82Zkdj3WD2jI1pY22T2DQJMrHu2lNy5Mwu4NnvnJLXxfxldkeXT7f3s5sltYKpSKui4lgY4UrDMS_WLC84GmWrgitpKzRcKQMibUXBDZPCAYJbW4UIaHMlpuRizN377qPHEPW2632bXmquWCWSRZXJxUeX9V0IHp3e-7ox_lMz0N-l6bE0nUrTP6XpIUFihEIytxv0f9H_UF-t-27J</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918349396</pqid></control><display><type>article</type><title>EFRNet: Efficient Feature Reuse Network for Real-time Semantic Segmentation</title><source>SpringerLink Journals</source><source>ProQuest Central</source><creator>Li, Yaqian ; Li, Moran ; Li, Zhongliang ; Xiao, Cunjun ; Li, Haibin</creator><creatorcontrib>Li, Yaqian ; Li, Moran ; Li, Zhongliang ; Xiao, Cunjun ; Li, Haibin</creatorcontrib><description>Semantic segmentation is a kind of dense prediction task, which has high requirements on the prediction accuracy and inference speed in mobile terminals. To reduce the computational burden of the segmentation network and supplement the missing spatial information of high-level features, an efficient feature reuse network (EFRNet) is proposed in two steps: a Multi-scale Bottleneck module is designed to extract multi-scale features, and a lightweight backbone is designed based on the MB module; then, features of different depths are integrated through efficient feature reuse model. Experiments on Cityscapes datasets demonstrate that the proposed EFRNet achieves an impressive balance between speed and precision. Specifically, without any pre-trained model and post-processing, it achieves 75.58% Mean IoU on the Cityscapes test dataset with the speed of 118 FPS on a single RTX 2080Ti GPU.</description><identifier>ISSN: 1370-4621</identifier><identifier>EISSN: 1573-773X</identifier><identifier>DOI: 10.1007/s11063-022-10740-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accuracy ; Artificial Intelligence ; Complex Systems ; Computational Intelligence ; Computer Science ; Datasets ; Design ; Modules ; Semantic segmentation ; Semantics ; Spatial data</subject><ispartof>Neural processing letters, 2022-12, Vol.54 (6), p.4647-4659</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-8582e5a3f6a2e45b1452ea9c85297c8ea299a03452352a173f0e0fbc9ee0ec493</citedby><cites>FETCH-LOGICAL-c319t-8582e5a3f6a2e45b1452ea9c85297c8ea299a03452352a173f0e0fbc9ee0ec493</cites><orcidid>0000-0003-1032-9910</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11063-022-10740-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918349396?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Li, Yaqian</creatorcontrib><creatorcontrib>Li, Moran</creatorcontrib><creatorcontrib>Li, Zhongliang</creatorcontrib><creatorcontrib>Xiao, Cunjun</creatorcontrib><creatorcontrib>Li, Haibin</creatorcontrib><title>EFRNet: Efficient Feature Reuse Network for Real-time Semantic Segmentation</title><title>Neural processing letters</title><addtitle>Neural Process Lett</addtitle><description>Semantic segmentation is a kind of dense prediction task, which has high requirements on the prediction accuracy and inference speed in mobile terminals. To reduce the computational burden of the segmentation network and supplement the missing spatial information of high-level features, an efficient feature reuse network (EFRNet) is proposed in two steps: a Multi-scale Bottleneck module is designed to extract multi-scale features, and a lightweight backbone is designed based on the MB module; then, features of different depths are integrated through efficient feature reuse model. Experiments on Cityscapes datasets demonstrate that the proposed EFRNet achieves an impressive balance between speed and precision. Specifically, without any pre-trained model and post-processing, it achieves 75.58% Mean IoU on the Cityscapes test dataset with the speed of 118 FPS on a single RTX 2080Ti GPU.</description><subject>Accuracy</subject><subject>Artificial Intelligence</subject><subject>Complex Systems</subject><subject>Computational Intelligence</subject><subject>Computer Science</subject><subject>Datasets</subject><subject>Design</subject><subject>Modules</subject><subject>Semantic segmentation</subject><subject>Semantics</subject><subject>Spatial data</subject><issn>1370-4621</issn><issn>1573-773X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kEFLxDAQhYMouK7-AU8Fz9FJ0jaNN1l2VVwUVgVvIRsmS9dtuyYpxX9vtII3T_OYed8beIScM7hkAPIqMAaloMA5ZSBzoMMBmbBCCiqleDtMWkigecnZMTkJYQuQMA4T8jBfrB4xXmdz52pbYxuzBZrYe8xW2AfM0nHo_HvmOp82Zkdj3WD2jI1pY22T2DQJMrHu2lNy5Mwu4NnvnJLXxfxldkeXT7f3s5sltYKpSKui4lgY4UrDMS_WLC84GmWrgitpKzRcKQMibUXBDZPCAYJbW4UIaHMlpuRizN377qPHEPW2632bXmquWCWSRZXJxUeX9V0IHp3e-7ox_lMz0N-l6bE0nUrTP6XpIUFihEIytxv0f9H_UF-t-27J</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Li, Yaqian</creator><creator>Li, Moran</creator><creator>Li, Zhongliang</creator><creator>Xiao, Cunjun</creator><creator>Li, Haibin</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><orcidid>https://orcid.org/0000-0003-1032-9910</orcidid></search><sort><creationdate>20221201</creationdate><title>EFRNet: Efficient Feature Reuse Network for Real-time Semantic Segmentation</title><author>Li, Yaqian ; Li, Moran ; Li, Zhongliang ; Xiao, Cunjun ; Li, Haibin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-8582e5a3f6a2e45b1452ea9c85297c8ea299a03452352a173f0e0fbc9ee0ec493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Artificial Intelligence</topic><topic>Complex Systems</topic><topic>Computational Intelligence</topic><topic>Computer Science</topic><topic>Datasets</topic><topic>Design</topic><topic>Modules</topic><topic>Semantic segmentation</topic><topic>Semantics</topic><topic>Spatial data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yaqian</creatorcontrib><creatorcontrib>Li, Moran</creatorcontrib><creatorcontrib>Li, Zhongliang</creatorcontrib><creatorcontrib>Xiao, Cunjun</creatorcontrib><creatorcontrib>Li, Haibin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><jtitle>Neural processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yaqian</au><au>Li, Moran</au><au>Li, Zhongliang</au><au>Xiao, Cunjun</au><au>Li, Haibin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EFRNet: Efficient Feature Reuse Network for Real-time Semantic Segmentation</atitle><jtitle>Neural processing letters</jtitle><stitle>Neural Process Lett</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>54</volume><issue>6</issue><spage>4647</spage><epage>4659</epage><pages>4647-4659</pages><issn>1370-4621</issn><eissn>1573-773X</eissn><abstract>Semantic segmentation is a kind of dense prediction task, which has high requirements on the prediction accuracy and inference speed in mobile terminals. To reduce the computational burden of the segmentation network and supplement the missing spatial information of high-level features, an efficient feature reuse network (EFRNet) is proposed in two steps: a Multi-scale Bottleneck module is designed to extract multi-scale features, and a lightweight backbone is designed based on the MB module; then, features of different depths are integrated through efficient feature reuse model. Experiments on Cityscapes datasets demonstrate that the proposed EFRNet achieves an impressive balance between speed and precision. Specifically, without any pre-trained model and post-processing, it achieves 75.58% Mean IoU on the Cityscapes test dataset with the speed of 118 FPS on a single RTX 2080Ti GPU.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11063-022-10740-w</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1032-9910</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1370-4621
ispartof Neural processing letters, 2022-12, Vol.54 (6), p.4647-4659
issn 1370-4621
1573-773X
language eng
recordid cdi_proquest_journals_2918349396
source SpringerLink Journals; ProQuest Central
subjects Accuracy
Artificial Intelligence
Complex Systems
Computational Intelligence
Computer Science
Datasets
Design
Modules
Semantic segmentation
Semantics
Spatial data
title EFRNet: Efficient Feature Reuse Network for Real-time Semantic Segmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T17%3A04%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EFRNet:%20Efficient%20Feature%20Reuse%20Network%20for%20Real-time%20Semantic%20Segmentation&rft.jtitle=Neural%20processing%20letters&rft.au=Li,%20Yaqian&rft.date=2022-12-01&rft.volume=54&rft.issue=6&rft.spage=4647&rft.epage=4659&rft.pages=4647-4659&rft.issn=1370-4621&rft.eissn=1573-773X&rft_id=info:doi/10.1007/s11063-022-10740-w&rft_dat=%3Cproquest_cross%3E2918349396%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918349396&rft_id=info:pmid/&rfr_iscdi=true