Multi-information Constraint Learning for Unsupervised Domain Adaptive Person Re-identification
Person re-identification (ReID) aims at identifying the same person’s images across different cameras. However large domain gaps between source and target domains, as well as lack of label information in the target domain poses a huge challenge for unsupervised domain adaptive the ReID model. This p...
Gespeichert in:
Veröffentlicht in: | Neural processing letters 2023-02, Vol.55 (1), p.299-317 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 317 |
---|---|
container_issue | 1 |
container_start_page | 299 |
container_title | Neural processing letters |
container_volume | 55 |
creator | Dongyue, Chen Haozhe, Bing Chunren, Tang Miaoting, Tian Tong, Jia |
description | Person re-identification (ReID) aims at identifying the same person’s images across different cameras. However large domain gaps between source and target domains, as well as lack of label information in the target domain poses a huge challenge for unsupervised domain adaptive the ReID model. This paper tackles the challenge through three aspects : (1) we design a robust visual-spatiotemporal fusion model, which improves the quality of pseudo labels based on visual probability evaluation, spatiotemporal probability evaluation and visual-spatiotemporal fusion. (2) we propose a novel sampling strategy for deep mutual information estimation and maximization algorithm (DIM), which employs data augmentation and dynamic storage stack to improve the reliability of the selected samples. (3) We combine the DIM loss and other supervised losses together to construct a new multi-objective loss function and present a corresponding dynamic adjustment strategy for the weights of loss functions, which contribute to stable the convergence of the training process. As shown in experimental results, our model has achieved excellent results on two ReID datasets, Market-1501 and DukeMTMC-ReID. |
doi_str_mv | 10.1007/s11063-022-10883-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918348739</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918348739</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-159d986a59d51c3443549dbaa6dcfc8770462a613bc631e162c8063c1416999a3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwNOC52gm2U02x1L_QkURC95Cms2WlDa7JtkWv72xFbx5moF5vzczD6FLINdAiLiJAIQzTCjFQOqa4d0RGkElGBaCfRznngmCS07hFJ3FuCIkY5SMkHoe1slh59subHRynS-mnY8paOdTMbM6eOeXRZ4Wcx-H3oati7YpbrtNVhSTRvfJbW3xakPM7JvFrrE-udaZvds5Omn1OtqL3zpG8_u79-kjnr08PE0nM2yoIAlDJRtZc51LBYaVJatK2Sy05o1pTS0EybdrDmxhOAMLnJo6P2ygBC6l1GyMrg6-feg-BxuTWnVD8HmlohJqVtaCyayiB5UJXYzBtqoPbqPDlwKifoJUhyBVDlLtg1S7DLEDFLPYL234s_6H-gbj_XcZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918348739</pqid></control><display><type>article</type><title>Multi-information Constraint Learning for Unsupervised Domain Adaptive Person Re-identification</title><source>SpringerLink Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Dongyue, Chen ; Haozhe, Bing ; Chunren, Tang ; Miaoting, Tian ; Tong, Jia</creator><creatorcontrib>Dongyue, Chen ; Haozhe, Bing ; Chunren, Tang ; Miaoting, Tian ; Tong, Jia</creatorcontrib><description>Person re-identification (ReID) aims at identifying the same person’s images across different cameras. However large domain gaps between source and target domains, as well as lack of label information in the target domain poses a huge challenge for unsupervised domain adaptive the ReID model. This paper tackles the challenge through three aspects : (1) we design a robust visual-spatiotemporal fusion model, which improves the quality of pseudo labels based on visual probability evaluation, spatiotemporal probability evaluation and visual-spatiotemporal fusion. (2) we propose a novel sampling strategy for deep mutual information estimation and maximization algorithm (DIM), which employs data augmentation and dynamic storage stack to improve the reliability of the selected samples. (3) We combine the DIM loss and other supervised losses together to construct a new multi-objective loss function and present a corresponding dynamic adjustment strategy for the weights of loss functions, which contribute to stable the convergence of the training process. As shown in experimental results, our model has achieved excellent results on two ReID datasets, Market-1501 and DukeMTMC-ReID.</description><identifier>ISSN: 1370-4621</identifier><identifier>EISSN: 1573-773X</identifier><identifier>DOI: 10.1007/s11063-022-10883-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Artificial Intelligence ; Bias ; Complex Systems ; Computational Intelligence ; Computer Science ; Data augmentation ; Datasets ; Domains ; Labels ; Methods ; Optimization</subject><ispartof>Neural processing letters, 2023-02, Vol.55 (1), p.299-317</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-159d986a59d51c3443549dbaa6dcfc8770462a613bc631e162c8063c1416999a3</cites><orcidid>0000-0003-1249-5197</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11063-022-10883-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918348739?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,778,782,21371,27907,27908,33727,41471,42540,43788,51302,64366,64370,72220</link.rule.ids></links><search><creatorcontrib>Dongyue, Chen</creatorcontrib><creatorcontrib>Haozhe, Bing</creatorcontrib><creatorcontrib>Chunren, Tang</creatorcontrib><creatorcontrib>Miaoting, Tian</creatorcontrib><creatorcontrib>Tong, Jia</creatorcontrib><title>Multi-information Constraint Learning for Unsupervised Domain Adaptive Person Re-identification</title><title>Neural processing letters</title><addtitle>Neural Process Lett</addtitle><description>Person re-identification (ReID) aims at identifying the same person’s images across different cameras. However large domain gaps between source and target domains, as well as lack of label information in the target domain poses a huge challenge for unsupervised domain adaptive the ReID model. This paper tackles the challenge through three aspects : (1) we design a robust visual-spatiotemporal fusion model, which improves the quality of pseudo labels based on visual probability evaluation, spatiotemporal probability evaluation and visual-spatiotemporal fusion. (2) we propose a novel sampling strategy for deep mutual information estimation and maximization algorithm (DIM), which employs data augmentation and dynamic storage stack to improve the reliability of the selected samples. (3) We combine the DIM loss and other supervised losses together to construct a new multi-objective loss function and present a corresponding dynamic adjustment strategy for the weights of loss functions, which contribute to stable the convergence of the training process. As shown in experimental results, our model has achieved excellent results on two ReID datasets, Market-1501 and DukeMTMC-ReID.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Bias</subject><subject>Complex Systems</subject><subject>Computational Intelligence</subject><subject>Computer Science</subject><subject>Data augmentation</subject><subject>Datasets</subject><subject>Domains</subject><subject>Labels</subject><subject>Methods</subject><subject>Optimization</subject><issn>1370-4621</issn><issn>1573-773X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE9LAzEQxYMoWKtfwNOC52gm2U02x1L_QkURC95Cms2WlDa7JtkWv72xFbx5moF5vzczD6FLINdAiLiJAIQzTCjFQOqa4d0RGkElGBaCfRznngmCS07hFJ3FuCIkY5SMkHoe1slh59subHRynS-mnY8paOdTMbM6eOeXRZ4Wcx-H3oati7YpbrtNVhSTRvfJbW3xakPM7JvFrrE-udaZvds5Omn1OtqL3zpG8_u79-kjnr08PE0nM2yoIAlDJRtZc51LBYaVJatK2Sy05o1pTS0EybdrDmxhOAMLnJo6P2ygBC6l1GyMrg6-feg-BxuTWnVD8HmlohJqVtaCyayiB5UJXYzBtqoPbqPDlwKifoJUhyBVDlLtg1S7DLEDFLPYL234s_6H-gbj_XcZ</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Dongyue, Chen</creator><creator>Haozhe, Bing</creator><creator>Chunren, Tang</creator><creator>Miaoting, Tian</creator><creator>Tong, Jia</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><orcidid>https://orcid.org/0000-0003-1249-5197</orcidid></search><sort><creationdate>20230201</creationdate><title>Multi-information Constraint Learning for Unsupervised Domain Adaptive Person Re-identification</title><author>Dongyue, Chen ; Haozhe, Bing ; Chunren, Tang ; Miaoting, Tian ; Tong, Jia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-159d986a59d51c3443549dbaa6dcfc8770462a613bc631e162c8063c1416999a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Bias</topic><topic>Complex Systems</topic><topic>Computational Intelligence</topic><topic>Computer Science</topic><topic>Data augmentation</topic><topic>Datasets</topic><topic>Domains</topic><topic>Labels</topic><topic>Methods</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dongyue, Chen</creatorcontrib><creatorcontrib>Haozhe, Bing</creatorcontrib><creatorcontrib>Chunren, Tang</creatorcontrib><creatorcontrib>Miaoting, Tian</creatorcontrib><creatorcontrib>Tong, Jia</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><jtitle>Neural processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dongyue, Chen</au><au>Haozhe, Bing</au><au>Chunren, Tang</au><au>Miaoting, Tian</au><au>Tong, Jia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-information Constraint Learning for Unsupervised Domain Adaptive Person Re-identification</atitle><jtitle>Neural processing letters</jtitle><stitle>Neural Process Lett</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>55</volume><issue>1</issue><spage>299</spage><epage>317</epage><pages>299-317</pages><issn>1370-4621</issn><eissn>1573-773X</eissn><abstract>Person re-identification (ReID) aims at identifying the same person’s images across different cameras. However large domain gaps between source and target domains, as well as lack of label information in the target domain poses a huge challenge for unsupervised domain adaptive the ReID model. This paper tackles the challenge through three aspects : (1) we design a robust visual-spatiotemporal fusion model, which improves the quality of pseudo labels based on visual probability evaluation, spatiotemporal probability evaluation and visual-spatiotemporal fusion. (2) we propose a novel sampling strategy for deep mutual information estimation and maximization algorithm (DIM), which employs data augmentation and dynamic storage stack to improve the reliability of the selected samples. (3) We combine the DIM loss and other supervised losses together to construct a new multi-objective loss function and present a corresponding dynamic adjustment strategy for the weights of loss functions, which contribute to stable the convergence of the training process. As shown in experimental results, our model has achieved excellent results on two ReID datasets, Market-1501 and DukeMTMC-ReID.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11063-022-10883-w</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-1249-5197</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1370-4621 |
ispartof | Neural processing letters, 2023-02, Vol.55 (1), p.299-317 |
issn | 1370-4621 1573-773X |
language | eng |
recordid | cdi_proquest_journals_2918348739 |
source | SpringerLink Journals; ProQuest Central UK/Ireland; ProQuest Central |
subjects | Algorithms Artificial Intelligence Bias Complex Systems Computational Intelligence Computer Science Data augmentation Datasets Domains Labels Methods Optimization |
title | Multi-information Constraint Learning for Unsupervised Domain Adaptive Person Re-identification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T01%3A48%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-information%20Constraint%20Learning%20for%20Unsupervised%20Domain%20Adaptive%20Person%20Re-identification&rft.jtitle=Neural%20processing%20letters&rft.au=Dongyue,%20Chen&rft.date=2023-02-01&rft.volume=55&rft.issue=1&rft.spage=299&rft.epage=317&rft.pages=299-317&rft.issn=1370-4621&rft.eissn=1573-773X&rft_id=info:doi/10.1007/s11063-022-10883-w&rft_dat=%3Cproquest_cross%3E2918348739%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918348739&rft_id=info:pmid/&rfr_iscdi=true |