Multi-information Constraint Learning for Unsupervised Domain Adaptive Person Re-identification

Person re-identification (ReID) aims at identifying the same person’s images across different cameras. However large domain gaps between source and target domains, as well as lack of label information in the target domain poses a huge challenge for unsupervised domain adaptive the ReID model. This p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural processing letters 2023-02, Vol.55 (1), p.299-317
Hauptverfasser: Dongyue, Chen, Haozhe, Bing, Chunren, Tang, Miaoting, Tian, Tong, Jia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 317
container_issue 1
container_start_page 299
container_title Neural processing letters
container_volume 55
creator Dongyue, Chen
Haozhe, Bing
Chunren, Tang
Miaoting, Tian
Tong, Jia
description Person re-identification (ReID) aims at identifying the same person’s images across different cameras. However large domain gaps between source and target domains, as well as lack of label information in the target domain poses a huge challenge for unsupervised domain adaptive the ReID model. This paper tackles the challenge through three aspects : (1) we design a robust visual-spatiotemporal fusion model, which improves the quality of pseudo labels based on visual probability evaluation, spatiotemporal probability evaluation and visual-spatiotemporal fusion. (2) we propose a novel sampling strategy for deep mutual information estimation and maximization algorithm (DIM), which employs data augmentation and dynamic storage stack to improve the reliability of the selected samples. (3) We combine the DIM loss and other supervised losses together to construct a new multi-objective loss function and present a corresponding dynamic adjustment strategy for the weights of loss functions, which contribute to stable the convergence of the training process. As shown in experimental results, our model has achieved excellent results on two ReID datasets, Market-1501 and DukeMTMC-ReID.
doi_str_mv 10.1007/s11063-022-10883-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918348739</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918348739</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-159d986a59d51c3443549dbaa6dcfc8770462a613bc631e162c8063c1416999a3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwNOC52gm2U02x1L_QkURC95Cms2WlDa7JtkWv72xFbx5moF5vzczD6FLINdAiLiJAIQzTCjFQOqa4d0RGkElGBaCfRznngmCS07hFJ3FuCIkY5SMkHoe1slh59subHRynS-mnY8paOdTMbM6eOeXRZ4Wcx-H3oati7YpbrtNVhSTRvfJbW3xakPM7JvFrrE-udaZvds5Omn1OtqL3zpG8_u79-kjnr08PE0nM2yoIAlDJRtZc51LBYaVJatK2Sy05o1pTS0EybdrDmxhOAMLnJo6P2ygBC6l1GyMrg6-feg-BxuTWnVD8HmlohJqVtaCyayiB5UJXYzBtqoPbqPDlwKifoJUhyBVDlLtg1S7DLEDFLPYL234s_6H-gbj_XcZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918348739</pqid></control><display><type>article</type><title>Multi-information Constraint Learning for Unsupervised Domain Adaptive Person Re-identification</title><source>SpringerLink Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Dongyue, Chen ; Haozhe, Bing ; Chunren, Tang ; Miaoting, Tian ; Tong, Jia</creator><creatorcontrib>Dongyue, Chen ; Haozhe, Bing ; Chunren, Tang ; Miaoting, Tian ; Tong, Jia</creatorcontrib><description>Person re-identification (ReID) aims at identifying the same person’s images across different cameras. However large domain gaps between source and target domains, as well as lack of label information in the target domain poses a huge challenge for unsupervised domain adaptive the ReID model. This paper tackles the challenge through three aspects : (1) we design a robust visual-spatiotemporal fusion model, which improves the quality of pseudo labels based on visual probability evaluation, spatiotemporal probability evaluation and visual-spatiotemporal fusion. (2) we propose a novel sampling strategy for deep mutual information estimation and maximization algorithm (DIM), which employs data augmentation and dynamic storage stack to improve the reliability of the selected samples. (3) We combine the DIM loss and other supervised losses together to construct a new multi-objective loss function and present a corresponding dynamic adjustment strategy for the weights of loss functions, which contribute to stable the convergence of the training process. As shown in experimental results, our model has achieved excellent results on two ReID datasets, Market-1501 and DukeMTMC-ReID.</description><identifier>ISSN: 1370-4621</identifier><identifier>EISSN: 1573-773X</identifier><identifier>DOI: 10.1007/s11063-022-10883-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Artificial Intelligence ; Bias ; Complex Systems ; Computational Intelligence ; Computer Science ; Data augmentation ; Datasets ; Domains ; Labels ; Methods ; Optimization</subject><ispartof>Neural processing letters, 2023-02, Vol.55 (1), p.299-317</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-159d986a59d51c3443549dbaa6dcfc8770462a613bc631e162c8063c1416999a3</cites><orcidid>0000-0003-1249-5197</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11063-022-10883-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918348739?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,778,782,21371,27907,27908,33727,41471,42540,43788,51302,64366,64370,72220</link.rule.ids></links><search><creatorcontrib>Dongyue, Chen</creatorcontrib><creatorcontrib>Haozhe, Bing</creatorcontrib><creatorcontrib>Chunren, Tang</creatorcontrib><creatorcontrib>Miaoting, Tian</creatorcontrib><creatorcontrib>Tong, Jia</creatorcontrib><title>Multi-information Constraint Learning for Unsupervised Domain Adaptive Person Re-identification</title><title>Neural processing letters</title><addtitle>Neural Process Lett</addtitle><description>Person re-identification (ReID) aims at identifying the same person’s images across different cameras. However large domain gaps between source and target domains, as well as lack of label information in the target domain poses a huge challenge for unsupervised domain adaptive the ReID model. This paper tackles the challenge through three aspects : (1) we design a robust visual-spatiotemporal fusion model, which improves the quality of pseudo labels based on visual probability evaluation, spatiotemporal probability evaluation and visual-spatiotemporal fusion. (2) we propose a novel sampling strategy for deep mutual information estimation and maximization algorithm (DIM), which employs data augmentation and dynamic storage stack to improve the reliability of the selected samples. (3) We combine the DIM loss and other supervised losses together to construct a new multi-objective loss function and present a corresponding dynamic adjustment strategy for the weights of loss functions, which contribute to stable the convergence of the training process. As shown in experimental results, our model has achieved excellent results on two ReID datasets, Market-1501 and DukeMTMC-ReID.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Bias</subject><subject>Complex Systems</subject><subject>Computational Intelligence</subject><subject>Computer Science</subject><subject>Data augmentation</subject><subject>Datasets</subject><subject>Domains</subject><subject>Labels</subject><subject>Methods</subject><subject>Optimization</subject><issn>1370-4621</issn><issn>1573-773X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE9LAzEQxYMoWKtfwNOC52gm2U02x1L_QkURC95Cms2WlDa7JtkWv72xFbx5moF5vzczD6FLINdAiLiJAIQzTCjFQOqa4d0RGkElGBaCfRznngmCS07hFJ3FuCIkY5SMkHoe1slh59subHRynS-mnY8paOdTMbM6eOeXRZ4Wcx-H3oati7YpbrtNVhSTRvfJbW3xakPM7JvFrrE-udaZvds5Omn1OtqL3zpG8_u79-kjnr08PE0nM2yoIAlDJRtZc51LBYaVJatK2Sy05o1pTS0EybdrDmxhOAMLnJo6P2ygBC6l1GyMrg6-feg-BxuTWnVD8HmlohJqVtaCyayiB5UJXYzBtqoPbqPDlwKifoJUhyBVDlLtg1S7DLEDFLPYL234s_6H-gbj_XcZ</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Dongyue, Chen</creator><creator>Haozhe, Bing</creator><creator>Chunren, Tang</creator><creator>Miaoting, Tian</creator><creator>Tong, Jia</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><orcidid>https://orcid.org/0000-0003-1249-5197</orcidid></search><sort><creationdate>20230201</creationdate><title>Multi-information Constraint Learning for Unsupervised Domain Adaptive Person Re-identification</title><author>Dongyue, Chen ; Haozhe, Bing ; Chunren, Tang ; Miaoting, Tian ; Tong, Jia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-159d986a59d51c3443549dbaa6dcfc8770462a613bc631e162c8063c1416999a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Bias</topic><topic>Complex Systems</topic><topic>Computational Intelligence</topic><topic>Computer Science</topic><topic>Data augmentation</topic><topic>Datasets</topic><topic>Domains</topic><topic>Labels</topic><topic>Methods</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dongyue, Chen</creatorcontrib><creatorcontrib>Haozhe, Bing</creatorcontrib><creatorcontrib>Chunren, Tang</creatorcontrib><creatorcontrib>Miaoting, Tian</creatorcontrib><creatorcontrib>Tong, Jia</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><jtitle>Neural processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dongyue, Chen</au><au>Haozhe, Bing</au><au>Chunren, Tang</au><au>Miaoting, Tian</au><au>Tong, Jia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-information Constraint Learning for Unsupervised Domain Adaptive Person Re-identification</atitle><jtitle>Neural processing letters</jtitle><stitle>Neural Process Lett</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>55</volume><issue>1</issue><spage>299</spage><epage>317</epage><pages>299-317</pages><issn>1370-4621</issn><eissn>1573-773X</eissn><abstract>Person re-identification (ReID) aims at identifying the same person’s images across different cameras. However large domain gaps between source and target domains, as well as lack of label information in the target domain poses a huge challenge for unsupervised domain adaptive the ReID model. This paper tackles the challenge through three aspects : (1) we design a robust visual-spatiotemporal fusion model, which improves the quality of pseudo labels based on visual probability evaluation, spatiotemporal probability evaluation and visual-spatiotemporal fusion. (2) we propose a novel sampling strategy for deep mutual information estimation and maximization algorithm (DIM), which employs data augmentation and dynamic storage stack to improve the reliability of the selected samples. (3) We combine the DIM loss and other supervised losses together to construct a new multi-objective loss function and present a corresponding dynamic adjustment strategy for the weights of loss functions, which contribute to stable the convergence of the training process. As shown in experimental results, our model has achieved excellent results on two ReID datasets, Market-1501 and DukeMTMC-ReID.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11063-022-10883-w</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-1249-5197</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1370-4621
ispartof Neural processing letters, 2023-02, Vol.55 (1), p.299-317
issn 1370-4621
1573-773X
language eng
recordid cdi_proquest_journals_2918348739
source SpringerLink Journals; ProQuest Central UK/Ireland; ProQuest Central
subjects Algorithms
Artificial Intelligence
Bias
Complex Systems
Computational Intelligence
Computer Science
Data augmentation
Datasets
Domains
Labels
Methods
Optimization
title Multi-information Constraint Learning for Unsupervised Domain Adaptive Person Re-identification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T01%3A48%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-information%20Constraint%20Learning%20for%20Unsupervised%20Domain%20Adaptive%20Person%20Re-identification&rft.jtitle=Neural%20processing%20letters&rft.au=Dongyue,%20Chen&rft.date=2023-02-01&rft.volume=55&rft.issue=1&rft.spage=299&rft.epage=317&rft.pages=299-317&rft.issn=1370-4621&rft.eissn=1573-773X&rft_id=info:doi/10.1007/s11063-022-10883-w&rft_dat=%3Cproquest_cross%3E2918348739%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918348739&rft_id=info:pmid/&rfr_iscdi=true