Mixed Radial Basis Function Neural Network Training Using Genetic Algorithm
The Radial Basis Function Neural Network (RBFNN) is a feedforward artificial neural network employing radial basis functions as activation functions in the hidden layer. The output of the RBFNN is a linear combination of the outputs from the hidden layer. This paper present a Mixed Radial Basis Func...
Gespeichert in:
Veröffentlicht in: | Neural processing letters 2023-12, Vol.55 (8), p.10569-10587 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10587 |
---|---|
container_issue | 8 |
container_start_page | 10569 |
container_title | Neural processing letters |
container_volume | 55 |
creator | Elansari, Taoufyq Ouanan, Mohammed Bourray, Hamid |
description | The Radial Basis Function Neural Network (RBFNN) is a feedforward artificial neural network employing radial basis functions as activation functions in the hidden layer. The output of the RBFNN is a linear combination of the outputs from the hidden layer. This paper present a Mixed Radial Basis Function Neural Network (MRBFNN) training using Genetic Algorithm (GA). The choice of the type of Radial Basis Functions (RBFs) utilized in each hidden layer neuron has a significant impact on convergence, interpolation and performance. In this work, the authors are introducing a new approach to optimizing the choice of radial basis functions, centers, radius and weights of the output layer. We model in terms of mixed-variable optimization problems with linear constraints. To solve this model we will use an approach based on the genetic algorithm, allows us to determine the types of RBF to use in the hidden layer and the optimal weight of the output layer which gives us a good generalization. The results numerically demonstrate the performance of the theoretic results presented in this paper, as well as the benefits of the new modeling. |
doi_str_mv | 10.1007/s11063-023-11339-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918348529</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918348529</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-8268e654d931bc67a974698ff51eaf38e06a28d0109b10dd5d2f8e29369035803</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWKt_wNOC52iS2WSTYy22ilpBWvAW0k22pra7NdlF_femruDNy8wwvO_N8BA6p-SSElJcRUqJAEwYYEoBFOYHaEB5Abgo4OUwzVAQnAtGj9FJjGtCEsbIAN0_-k9ns2djvdlk1yb6mE26umx9U2cz14W0nbn2owlv2TwYX_t6lS3ivk5d7VpfZqPNqgm-fd2eoqPKbKI7--1DtJjczMe3-OFpejcePeASqGqxZEI6wXOrgC5LURhV5ELJquLUmQqkI8IwadOHakmJtdyySjqmQCgCXBIYoovedxea987FVq-bLtTppGaKSsglT-ohYr2qDE2MwVV6F_zWhC9Nid6HpvvQdApN_4SmeYKgh2IS1ysX_qz_ob4BQ3htrg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918348529</pqid></control><display><type>article</type><title>Mixed Radial Basis Function Neural Network Training Using Genetic Algorithm</title><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Elansari, Taoufyq ; Ouanan, Mohammed ; Bourray, Hamid</creator><creatorcontrib>Elansari, Taoufyq ; Ouanan, Mohammed ; Bourray, Hamid</creatorcontrib><description>The Radial Basis Function Neural Network (RBFNN) is a feedforward artificial neural network employing radial basis functions as activation functions in the hidden layer. The output of the RBFNN is a linear combination of the outputs from the hidden layer. This paper present a Mixed Radial Basis Function Neural Network (MRBFNN) training using Genetic Algorithm (GA). The choice of the type of Radial Basis Functions (RBFs) utilized in each hidden layer neuron has a significant impact on convergence, interpolation and performance. In this work, the authors are introducing a new approach to optimizing the choice of radial basis functions, centers, radius and weights of the output layer. We model in terms of mixed-variable optimization problems with linear constraints. To solve this model we will use an approach based on the genetic algorithm, allows us to determine the types of RBF to use in the hidden layer and the optimal weight of the output layer which gives us a good generalization. The results numerically demonstrate the performance of the theoretic results presented in this paper, as well as the benefits of the new modeling.</description><identifier>ISSN: 1370-4621</identifier><identifier>EISSN: 1573-773X</identifier><identifier>DOI: 10.1007/s11063-023-11339-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Approximation ; Artificial Intelligence ; Artificial neural networks ; Complex Systems ; Computational Intelligence ; Computer Science ; Constraint modelling ; Genetic algorithms ; Interpolation ; Mathematical analysis ; Methods ; Neural networks ; Neurons ; Optimization ; Radial basis function ; Saturn ; Training ; Variables</subject><ispartof>Neural processing letters, 2023-12, Vol.55 (8), p.10569-10587</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-8268e654d931bc67a974698ff51eaf38e06a28d0109b10dd5d2f8e29369035803</citedby><cites>FETCH-LOGICAL-c319t-8268e654d931bc67a974698ff51eaf38e06a28d0109b10dd5d2f8e29369035803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11063-023-11339-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918348529?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Elansari, Taoufyq</creatorcontrib><creatorcontrib>Ouanan, Mohammed</creatorcontrib><creatorcontrib>Bourray, Hamid</creatorcontrib><title>Mixed Radial Basis Function Neural Network Training Using Genetic Algorithm</title><title>Neural processing letters</title><addtitle>Neural Process Lett</addtitle><description>The Radial Basis Function Neural Network (RBFNN) is a feedforward artificial neural network employing radial basis functions as activation functions in the hidden layer. The output of the RBFNN is a linear combination of the outputs from the hidden layer. This paper present a Mixed Radial Basis Function Neural Network (MRBFNN) training using Genetic Algorithm (GA). The choice of the type of Radial Basis Functions (RBFs) utilized in each hidden layer neuron has a significant impact on convergence, interpolation and performance. In this work, the authors are introducing a new approach to optimizing the choice of radial basis functions, centers, radius and weights of the output layer. We model in terms of mixed-variable optimization problems with linear constraints. To solve this model we will use an approach based on the genetic algorithm, allows us to determine the types of RBF to use in the hidden layer and the optimal weight of the output layer which gives us a good generalization. The results numerically demonstrate the performance of the theoretic results presented in this paper, as well as the benefits of the new modeling.</description><subject>Approximation</subject><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Complex Systems</subject><subject>Computational Intelligence</subject><subject>Computer Science</subject><subject>Constraint modelling</subject><subject>Genetic algorithms</subject><subject>Interpolation</subject><subject>Mathematical analysis</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Optimization</subject><subject>Radial basis function</subject><subject>Saturn</subject><subject>Training</subject><subject>Variables</subject><issn>1370-4621</issn><issn>1573-773X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kEFLAzEQhYMoWKt_wNOC52iS2WSTYy22ilpBWvAW0k22pra7NdlF_femruDNy8wwvO_N8BA6p-SSElJcRUqJAEwYYEoBFOYHaEB5Abgo4OUwzVAQnAtGj9FJjGtCEsbIAN0_-k9ns2djvdlk1yb6mE26umx9U2cz14W0nbn2owlv2TwYX_t6lS3ivk5d7VpfZqPNqgm-fd2eoqPKbKI7--1DtJjczMe3-OFpejcePeASqGqxZEI6wXOrgC5LURhV5ELJquLUmQqkI8IwadOHakmJtdyySjqmQCgCXBIYoovedxea987FVq-bLtTppGaKSsglT-ohYr2qDE2MwVV6F_zWhC9Nid6HpvvQdApN_4SmeYKgh2IS1ysX_qz_ob4BQ3htrg</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Elansari, Taoufyq</creator><creator>Ouanan, Mohammed</creator><creator>Bourray, Hamid</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope></search><sort><creationdate>20231201</creationdate><title>Mixed Radial Basis Function Neural Network Training Using Genetic Algorithm</title><author>Elansari, Taoufyq ; Ouanan, Mohammed ; Bourray, Hamid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-8268e654d931bc67a974698ff51eaf38e06a28d0109b10dd5d2f8e29369035803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Approximation</topic><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Complex Systems</topic><topic>Computational Intelligence</topic><topic>Computer Science</topic><topic>Constraint modelling</topic><topic>Genetic algorithms</topic><topic>Interpolation</topic><topic>Mathematical analysis</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Optimization</topic><topic>Radial basis function</topic><topic>Saturn</topic><topic>Training</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elansari, Taoufyq</creatorcontrib><creatorcontrib>Ouanan, Mohammed</creatorcontrib><creatorcontrib>Bourray, Hamid</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><jtitle>Neural processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elansari, Taoufyq</au><au>Ouanan, Mohammed</au><au>Bourray, Hamid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mixed Radial Basis Function Neural Network Training Using Genetic Algorithm</atitle><jtitle>Neural processing letters</jtitle><stitle>Neural Process Lett</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>55</volume><issue>8</issue><spage>10569</spage><epage>10587</epage><pages>10569-10587</pages><issn>1370-4621</issn><eissn>1573-773X</eissn><abstract>The Radial Basis Function Neural Network (RBFNN) is a feedforward artificial neural network employing radial basis functions as activation functions in the hidden layer. The output of the RBFNN is a linear combination of the outputs from the hidden layer. This paper present a Mixed Radial Basis Function Neural Network (MRBFNN) training using Genetic Algorithm (GA). The choice of the type of Radial Basis Functions (RBFs) utilized in each hidden layer neuron has a significant impact on convergence, interpolation and performance. In this work, the authors are introducing a new approach to optimizing the choice of radial basis functions, centers, radius and weights of the output layer. We model in terms of mixed-variable optimization problems with linear constraints. To solve this model we will use an approach based on the genetic algorithm, allows us to determine the types of RBF to use in the hidden layer and the optimal weight of the output layer which gives us a good generalization. The results numerically demonstrate the performance of the theoretic results presented in this paper, as well as the benefits of the new modeling.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11063-023-11339-5</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1370-4621 |
ispartof | Neural processing letters, 2023-12, Vol.55 (8), p.10569-10587 |
issn | 1370-4621 1573-773X |
language | eng |
recordid | cdi_proquest_journals_2918348529 |
source | SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Approximation Artificial Intelligence Artificial neural networks Complex Systems Computational Intelligence Computer Science Constraint modelling Genetic algorithms Interpolation Mathematical analysis Methods Neural networks Neurons Optimization Radial basis function Saturn Training Variables |
title | Mixed Radial Basis Function Neural Network Training Using Genetic Algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T17%3A22%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mixed%20Radial%20Basis%20Function%20Neural%20Network%20Training%20Using%20Genetic%20Algorithm&rft.jtitle=Neural%20processing%20letters&rft.au=Elansari,%20Taoufyq&rft.date=2023-12-01&rft.volume=55&rft.issue=8&rft.spage=10569&rft.epage=10587&rft.pages=10569-10587&rft.issn=1370-4621&rft.eissn=1573-773X&rft_id=info:doi/10.1007/s11063-023-11339-5&rft_dat=%3Cproquest_cross%3E2918348529%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918348529&rft_id=info:pmid/&rfr_iscdi=true |