Mixed Radial Basis Function Neural Network Training Using Genetic Algorithm

The Radial Basis Function Neural Network (RBFNN) is a feedforward artificial neural network employing radial basis functions as activation functions in the hidden layer. The output of the RBFNN is a linear combination of the outputs from the hidden layer. This paper present a Mixed Radial Basis Func...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural processing letters 2023-12, Vol.55 (8), p.10569-10587
Hauptverfasser: Elansari, Taoufyq, Ouanan, Mohammed, Bourray, Hamid
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10587
container_issue 8
container_start_page 10569
container_title Neural processing letters
container_volume 55
creator Elansari, Taoufyq
Ouanan, Mohammed
Bourray, Hamid
description The Radial Basis Function Neural Network (RBFNN) is a feedforward artificial neural network employing radial basis functions as activation functions in the hidden layer. The output of the RBFNN is a linear combination of the outputs from the hidden layer. This paper present a Mixed Radial Basis Function Neural Network (MRBFNN) training using Genetic Algorithm (GA). The choice of the type of Radial Basis Functions (RBFs) utilized in each hidden layer neuron has a significant impact on convergence, interpolation and performance. In this work, the authors are introducing a new approach to optimizing the choice of radial basis functions, centers, radius and weights of the output layer. We model in terms of mixed-variable optimization problems with linear constraints. To solve this model we will use an approach based on the genetic algorithm, allows us to determine the types of RBF to use in the hidden layer and the optimal weight of the output layer which gives us a good generalization. The results numerically demonstrate the performance of the theoretic results presented in this paper, as well as the benefits of the new modeling.
doi_str_mv 10.1007/s11063-023-11339-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918348529</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918348529</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-8268e654d931bc67a974698ff51eaf38e06a28d0109b10dd5d2f8e29369035803</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWKt_wNOC52iS2WSTYy22ilpBWvAW0k22pra7NdlF_femruDNy8wwvO_N8BA6p-SSElJcRUqJAEwYYEoBFOYHaEB5Abgo4OUwzVAQnAtGj9FJjGtCEsbIAN0_-k9ns2djvdlk1yb6mE26umx9U2cz14W0nbn2owlv2TwYX_t6lS3ivk5d7VpfZqPNqgm-fd2eoqPKbKI7--1DtJjczMe3-OFpejcePeASqGqxZEI6wXOrgC5LURhV5ELJquLUmQqkI8IwadOHakmJtdyySjqmQCgCXBIYoovedxea987FVq-bLtTppGaKSsglT-ohYr2qDE2MwVV6F_zWhC9Nid6HpvvQdApN_4SmeYKgh2IS1ysX_qz_ob4BQ3htrg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918348529</pqid></control><display><type>article</type><title>Mixed Radial Basis Function Neural Network Training Using Genetic Algorithm</title><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Elansari, Taoufyq ; Ouanan, Mohammed ; Bourray, Hamid</creator><creatorcontrib>Elansari, Taoufyq ; Ouanan, Mohammed ; Bourray, Hamid</creatorcontrib><description>The Radial Basis Function Neural Network (RBFNN) is a feedforward artificial neural network employing radial basis functions as activation functions in the hidden layer. The output of the RBFNN is a linear combination of the outputs from the hidden layer. This paper present a Mixed Radial Basis Function Neural Network (MRBFNN) training using Genetic Algorithm (GA). The choice of the type of Radial Basis Functions (RBFs) utilized in each hidden layer neuron has a significant impact on convergence, interpolation and performance. In this work, the authors are introducing a new approach to optimizing the choice of radial basis functions, centers, radius and weights of the output layer. We model in terms of mixed-variable optimization problems with linear constraints. To solve this model we will use an approach based on the genetic algorithm, allows us to determine the types of RBF to use in the hidden layer and the optimal weight of the output layer which gives us a good generalization. The results numerically demonstrate the performance of the theoretic results presented in this paper, as well as the benefits of the new modeling.</description><identifier>ISSN: 1370-4621</identifier><identifier>EISSN: 1573-773X</identifier><identifier>DOI: 10.1007/s11063-023-11339-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Approximation ; Artificial Intelligence ; Artificial neural networks ; Complex Systems ; Computational Intelligence ; Computer Science ; Constraint modelling ; Genetic algorithms ; Interpolation ; Mathematical analysis ; Methods ; Neural networks ; Neurons ; Optimization ; Radial basis function ; Saturn ; Training ; Variables</subject><ispartof>Neural processing letters, 2023-12, Vol.55 (8), p.10569-10587</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-8268e654d931bc67a974698ff51eaf38e06a28d0109b10dd5d2f8e29369035803</citedby><cites>FETCH-LOGICAL-c319t-8268e654d931bc67a974698ff51eaf38e06a28d0109b10dd5d2f8e29369035803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11063-023-11339-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918348529?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Elansari, Taoufyq</creatorcontrib><creatorcontrib>Ouanan, Mohammed</creatorcontrib><creatorcontrib>Bourray, Hamid</creatorcontrib><title>Mixed Radial Basis Function Neural Network Training Using Genetic Algorithm</title><title>Neural processing letters</title><addtitle>Neural Process Lett</addtitle><description>The Radial Basis Function Neural Network (RBFNN) is a feedforward artificial neural network employing radial basis functions as activation functions in the hidden layer. The output of the RBFNN is a linear combination of the outputs from the hidden layer. This paper present a Mixed Radial Basis Function Neural Network (MRBFNN) training using Genetic Algorithm (GA). The choice of the type of Radial Basis Functions (RBFs) utilized in each hidden layer neuron has a significant impact on convergence, interpolation and performance. In this work, the authors are introducing a new approach to optimizing the choice of radial basis functions, centers, radius and weights of the output layer. We model in terms of mixed-variable optimization problems with linear constraints. To solve this model we will use an approach based on the genetic algorithm, allows us to determine the types of RBF to use in the hidden layer and the optimal weight of the output layer which gives us a good generalization. The results numerically demonstrate the performance of the theoretic results presented in this paper, as well as the benefits of the new modeling.</description><subject>Approximation</subject><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Complex Systems</subject><subject>Computational Intelligence</subject><subject>Computer Science</subject><subject>Constraint modelling</subject><subject>Genetic algorithms</subject><subject>Interpolation</subject><subject>Mathematical analysis</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Optimization</subject><subject>Radial basis function</subject><subject>Saturn</subject><subject>Training</subject><subject>Variables</subject><issn>1370-4621</issn><issn>1573-773X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kEFLAzEQhYMoWKt_wNOC52iS2WSTYy22ilpBWvAW0k22pra7NdlF_femruDNy8wwvO_N8BA6p-SSElJcRUqJAEwYYEoBFOYHaEB5Abgo4OUwzVAQnAtGj9FJjGtCEsbIAN0_-k9ns2djvdlk1yb6mE26umx9U2cz14W0nbn2owlv2TwYX_t6lS3ivk5d7VpfZqPNqgm-fd2eoqPKbKI7--1DtJjczMe3-OFpejcePeASqGqxZEI6wXOrgC5LURhV5ELJquLUmQqkI8IwadOHakmJtdyySjqmQCgCXBIYoovedxea987FVq-bLtTppGaKSsglT-ohYr2qDE2MwVV6F_zWhC9Nid6HpvvQdApN_4SmeYKgh2IS1ysX_qz_ob4BQ3htrg</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Elansari, Taoufyq</creator><creator>Ouanan, Mohammed</creator><creator>Bourray, Hamid</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope></search><sort><creationdate>20231201</creationdate><title>Mixed Radial Basis Function Neural Network Training Using Genetic Algorithm</title><author>Elansari, Taoufyq ; Ouanan, Mohammed ; Bourray, Hamid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-8268e654d931bc67a974698ff51eaf38e06a28d0109b10dd5d2f8e29369035803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Approximation</topic><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Complex Systems</topic><topic>Computational Intelligence</topic><topic>Computer Science</topic><topic>Constraint modelling</topic><topic>Genetic algorithms</topic><topic>Interpolation</topic><topic>Mathematical analysis</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Optimization</topic><topic>Radial basis function</topic><topic>Saturn</topic><topic>Training</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elansari, Taoufyq</creatorcontrib><creatorcontrib>Ouanan, Mohammed</creatorcontrib><creatorcontrib>Bourray, Hamid</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><jtitle>Neural processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elansari, Taoufyq</au><au>Ouanan, Mohammed</au><au>Bourray, Hamid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mixed Radial Basis Function Neural Network Training Using Genetic Algorithm</atitle><jtitle>Neural processing letters</jtitle><stitle>Neural Process Lett</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>55</volume><issue>8</issue><spage>10569</spage><epage>10587</epage><pages>10569-10587</pages><issn>1370-4621</issn><eissn>1573-773X</eissn><abstract>The Radial Basis Function Neural Network (RBFNN) is a feedforward artificial neural network employing radial basis functions as activation functions in the hidden layer. The output of the RBFNN is a linear combination of the outputs from the hidden layer. This paper present a Mixed Radial Basis Function Neural Network (MRBFNN) training using Genetic Algorithm (GA). The choice of the type of Radial Basis Functions (RBFs) utilized in each hidden layer neuron has a significant impact on convergence, interpolation and performance. In this work, the authors are introducing a new approach to optimizing the choice of radial basis functions, centers, radius and weights of the output layer. We model in terms of mixed-variable optimization problems with linear constraints. To solve this model we will use an approach based on the genetic algorithm, allows us to determine the types of RBF to use in the hidden layer and the optimal weight of the output layer which gives us a good generalization. The results numerically demonstrate the performance of the theoretic results presented in this paper, as well as the benefits of the new modeling.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11063-023-11339-5</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1370-4621
ispartof Neural processing letters, 2023-12, Vol.55 (8), p.10569-10587
issn 1370-4621
1573-773X
language eng
recordid cdi_proquest_journals_2918348529
source SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Approximation
Artificial Intelligence
Artificial neural networks
Complex Systems
Computational Intelligence
Computer Science
Constraint modelling
Genetic algorithms
Interpolation
Mathematical analysis
Methods
Neural networks
Neurons
Optimization
Radial basis function
Saturn
Training
Variables
title Mixed Radial Basis Function Neural Network Training Using Genetic Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T17%3A22%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mixed%20Radial%20Basis%20Function%20Neural%20Network%20Training%20Using%20Genetic%20Algorithm&rft.jtitle=Neural%20processing%20letters&rft.au=Elansari,%20Taoufyq&rft.date=2023-12-01&rft.volume=55&rft.issue=8&rft.spage=10569&rft.epage=10587&rft.pages=10569-10587&rft.issn=1370-4621&rft.eissn=1573-773X&rft_id=info:doi/10.1007/s11063-023-11339-5&rft_dat=%3Cproquest_cross%3E2918348529%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918348529&rft_id=info:pmid/&rfr_iscdi=true