Research for an Adaptive Classifier Based on Dynamic Graph Learning

Extreme Learning Machine (ELM) is a representative learning algorithm commonly used in data classification and prediction. In the previous literature on ELM, there are few works that pay attention to the relationship and geometric information of data, it may bring about the relatively low accuracy a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural processing letters 2022-08, Vol.54 (4), p.2675-2693
Hauptverfasser: Li, Li, Zhao, Kaiyi, Sun, Ruizhi, Cai, Saihua, Liu, Yongtao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2693
container_issue 4
container_start_page 2675
container_title Neural processing letters
container_volume 54
creator Li, Li
Zhao, Kaiyi
Sun, Ruizhi
Cai, Saihua
Liu, Yongtao
description Extreme Learning Machine (ELM) is a representative learning algorithm commonly used in data classification and prediction. In the previous literature on ELM, there are few works that pay attention to the relationship and geometric information of data, it may bring about the relatively low accuracy and poorer performance. Combining the classic ELM algorithm and the basic knowledge of dynamic graph learning, considering the geometric information between two data points to construct the graph matrix, an adaptive graph classifier on the basis of extreme learning machine is presented in our work. Besides, a matrix preserving the geometric information of the data is constructed from the original data and adaptively update during each training iteration. To do this, we use an alternative optimization strategy to update the graph matrix, so that the new classifier can adapt to the graph matrix and the graph matrix can update the classifier. The results on fifteen real data sets demonstrate that the proposed method outperforms in binary classification and multi-classification tasks.
doi_str_mv 10.1007/s11063-021-10452-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918348165</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918348165</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-48daccefe30b9ab09fb70aee16ddc9e4067552481c87db3abe3cef086e702d473</originalsourceid><addsrcrecordid>eNp9kEFLwzAYhoMoOKd_wFPAc_RL0jbtcVadwkAQBW8hTb5uHVtakyns35tZwZunfIfneQMPIZccrjmAuomcQyEZCM44ZLlg6ohMeK4kU0q-H6dbKmBZIfgpOYtxDZA0ARNSv2BEE-yKtn2gxtOZM8Ou-0Jab0yMXdthoLcmoqO9p3d7b7adpfNghhVdJNF3fnlOTlqziXjx-07J28P9a_3IFs_zp3q2YFYo2LGsdMZabFFCU5kGqrZRYBB54ZytMINC5bnISm5L5RppGpSJhrJABcJlSk7J1bg7hP7jE-NOr_vP4NOXWlS8lEkt8kSJkbKhjzFgq4fQbU3Yaw76EEuPsXSKpX9i6cO0HKWYYL_E8Df9j_UNHnpsKQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918348165</pqid></control><display><type>article</type><title>Research for an Adaptive Classifier Based on Dynamic Graph Learning</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Li, Li ; Zhao, Kaiyi ; Sun, Ruizhi ; Cai, Saihua ; Liu, Yongtao</creator><creatorcontrib>Li, Li ; Zhao, Kaiyi ; Sun, Ruizhi ; Cai, Saihua ; Liu, Yongtao</creatorcontrib><description>Extreme Learning Machine (ELM) is a representative learning algorithm commonly used in data classification and prediction. In the previous literature on ELM, there are few works that pay attention to the relationship and geometric information of data, it may bring about the relatively low accuracy and poorer performance. Combining the classic ELM algorithm and the basic knowledge of dynamic graph learning, considering the geometric information between two data points to construct the graph matrix, an adaptive graph classifier on the basis of extreme learning machine is presented in our work. Besides, a matrix preserving the geometric information of the data is constructed from the original data and adaptively update during each training iteration. To do this, we use an alternative optimization strategy to update the graph matrix, so that the new classifier can adapt to the graph matrix and the graph matrix can update the classifier. The results on fifteen real data sets demonstrate that the proposed method outperforms in binary classification and multi-classification tasks.</description><identifier>ISSN: 1370-4621</identifier><identifier>EISSN: 1573-773X</identifier><identifier>DOI: 10.1007/s11063-021-10452-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accuracy ; Algorithms ; Artificial Intelligence ; Artificial neural networks ; Classification ; Classifiers ; Complex Systems ; Computational Intelligence ; Computer Science ; Data points ; Efficiency ; Feature selection ; Graphs ; Learning ; Machine learning ; Optimization</subject><ispartof>Neural processing letters, 2022-08, Vol.54 (4), p.2675-2693</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-48daccefe30b9ab09fb70aee16ddc9e4067552481c87db3abe3cef086e702d473</cites><orcidid>0000-0001-7267-5283</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11063-021-10452-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918348165?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21386,27922,27923,33742,41486,42555,43803,51317,64383,64387,72239</link.rule.ids></links><search><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Zhao, Kaiyi</creatorcontrib><creatorcontrib>Sun, Ruizhi</creatorcontrib><creatorcontrib>Cai, Saihua</creatorcontrib><creatorcontrib>Liu, Yongtao</creatorcontrib><title>Research for an Adaptive Classifier Based on Dynamic Graph Learning</title><title>Neural processing letters</title><addtitle>Neural Process Lett</addtitle><description>Extreme Learning Machine (ELM) is a representative learning algorithm commonly used in data classification and prediction. In the previous literature on ELM, there are few works that pay attention to the relationship and geometric information of data, it may bring about the relatively low accuracy and poorer performance. Combining the classic ELM algorithm and the basic knowledge of dynamic graph learning, considering the geometric information between two data points to construct the graph matrix, an adaptive graph classifier on the basis of extreme learning machine is presented in our work. Besides, a matrix preserving the geometric information of the data is constructed from the original data and adaptively update during each training iteration. To do this, we use an alternative optimization strategy to update the graph matrix, so that the new classifier can adapt to the graph matrix and the graph matrix can update the classifier. The results on fifteen real data sets demonstrate that the proposed method outperforms in binary classification and multi-classification tasks.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Complex Systems</subject><subject>Computational Intelligence</subject><subject>Computer Science</subject><subject>Data points</subject><subject>Efficiency</subject><subject>Feature selection</subject><subject>Graphs</subject><subject>Learning</subject><subject>Machine learning</subject><subject>Optimization</subject><issn>1370-4621</issn><issn>1573-773X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEFLwzAYhoMoOKd_wFPAc_RL0jbtcVadwkAQBW8hTb5uHVtakyns35tZwZunfIfneQMPIZccrjmAuomcQyEZCM44ZLlg6ohMeK4kU0q-H6dbKmBZIfgpOYtxDZA0ARNSv2BEE-yKtn2gxtOZM8Ou-0Jab0yMXdthoLcmoqO9p3d7b7adpfNghhVdJNF3fnlOTlqziXjx-07J28P9a_3IFs_zp3q2YFYo2LGsdMZabFFCU5kGqrZRYBB54ZytMINC5bnISm5L5RppGpSJhrJABcJlSk7J1bg7hP7jE-NOr_vP4NOXWlS8lEkt8kSJkbKhjzFgq4fQbU3Yaw76EEuPsXSKpX9i6cO0HKWYYL_E8Df9j_UNHnpsKQ</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Li, Li</creator><creator>Zhao, Kaiyi</creator><creator>Sun, Ruizhi</creator><creator>Cai, Saihua</creator><creator>Liu, Yongtao</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><orcidid>https://orcid.org/0000-0001-7267-5283</orcidid></search><sort><creationdate>20220801</creationdate><title>Research for an Adaptive Classifier Based on Dynamic Graph Learning</title><author>Li, Li ; Zhao, Kaiyi ; Sun, Ruizhi ; Cai, Saihua ; Liu, Yongtao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-48daccefe30b9ab09fb70aee16ddc9e4067552481c87db3abe3cef086e702d473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Complex Systems</topic><topic>Computational Intelligence</topic><topic>Computer Science</topic><topic>Data points</topic><topic>Efficiency</topic><topic>Feature selection</topic><topic>Graphs</topic><topic>Learning</topic><topic>Machine learning</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Zhao, Kaiyi</creatorcontrib><creatorcontrib>Sun, Ruizhi</creatorcontrib><creatorcontrib>Cai, Saihua</creatorcontrib><creatorcontrib>Liu, Yongtao</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><jtitle>Neural processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Li</au><au>Zhao, Kaiyi</au><au>Sun, Ruizhi</au><au>Cai, Saihua</au><au>Liu, Yongtao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research for an Adaptive Classifier Based on Dynamic Graph Learning</atitle><jtitle>Neural processing letters</jtitle><stitle>Neural Process Lett</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>54</volume><issue>4</issue><spage>2675</spage><epage>2693</epage><pages>2675-2693</pages><issn>1370-4621</issn><eissn>1573-773X</eissn><abstract>Extreme Learning Machine (ELM) is a representative learning algorithm commonly used in data classification and prediction. In the previous literature on ELM, there are few works that pay attention to the relationship and geometric information of data, it may bring about the relatively low accuracy and poorer performance. Combining the classic ELM algorithm and the basic knowledge of dynamic graph learning, considering the geometric information between two data points to construct the graph matrix, an adaptive graph classifier on the basis of extreme learning machine is presented in our work. Besides, a matrix preserving the geometric information of the data is constructed from the original data and adaptively update during each training iteration. To do this, we use an alternative optimization strategy to update the graph matrix, so that the new classifier can adapt to the graph matrix and the graph matrix can update the classifier. The results on fifteen real data sets demonstrate that the proposed method outperforms in binary classification and multi-classification tasks.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11063-021-10452-7</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-7267-5283</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1370-4621
ispartof Neural processing letters, 2022-08, Vol.54 (4), p.2675-2693
issn 1370-4621
1573-773X
language eng
recordid cdi_proquest_journals_2918348165
source ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Accuracy
Algorithms
Artificial Intelligence
Artificial neural networks
Classification
Classifiers
Complex Systems
Computational Intelligence
Computer Science
Data points
Efficiency
Feature selection
Graphs
Learning
Machine learning
Optimization
title Research for an Adaptive Classifier Based on Dynamic Graph Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T20%3A45%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20for%20an%20Adaptive%20Classifier%20Based%20on%20Dynamic%20Graph%20Learning&rft.jtitle=Neural%20processing%20letters&rft.au=Li,%20Li&rft.date=2022-08-01&rft.volume=54&rft.issue=4&rft.spage=2675&rft.epage=2693&rft.pages=2675-2693&rft.issn=1370-4621&rft.eissn=1573-773X&rft_id=info:doi/10.1007/s11063-021-10452-7&rft_dat=%3Cproquest_cross%3E2918348165%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918348165&rft_id=info:pmid/&rfr_iscdi=true