Research for an Adaptive Classifier Based on Dynamic Graph Learning
Extreme Learning Machine (ELM) is a representative learning algorithm commonly used in data classification and prediction. In the previous literature on ELM, there are few works that pay attention to the relationship and geometric information of data, it may bring about the relatively low accuracy a...
Gespeichert in:
Veröffentlicht in: | Neural processing letters 2022-08, Vol.54 (4), p.2675-2693 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2693 |
---|---|
container_issue | 4 |
container_start_page | 2675 |
container_title | Neural processing letters |
container_volume | 54 |
creator | Li, Li Zhao, Kaiyi Sun, Ruizhi Cai, Saihua Liu, Yongtao |
description | Extreme Learning Machine (ELM) is a representative learning algorithm commonly used in data classification and prediction. In the previous literature on ELM, there are few works that pay attention to the relationship and geometric information of data, it may bring about the relatively low accuracy and poorer performance. Combining the classic ELM algorithm and the basic knowledge of dynamic graph learning, considering the geometric information between two data points to construct the graph matrix, an adaptive graph classifier on the basis of extreme learning machine is presented in our work. Besides, a matrix preserving the geometric information of the data is constructed from the original data and adaptively update during each training iteration. To do this, we use an alternative optimization strategy to update the graph matrix, so that the new classifier can adapt to the graph matrix and the graph matrix can update the classifier. The results on fifteen real data sets demonstrate that the proposed method outperforms in binary classification and multi-classification tasks. |
doi_str_mv | 10.1007/s11063-021-10452-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918348165</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918348165</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-48daccefe30b9ab09fb70aee16ddc9e4067552481c87db3abe3cef086e702d473</originalsourceid><addsrcrecordid>eNp9kEFLwzAYhoMoOKd_wFPAc_RL0jbtcVadwkAQBW8hTb5uHVtakyns35tZwZunfIfneQMPIZccrjmAuomcQyEZCM44ZLlg6ohMeK4kU0q-H6dbKmBZIfgpOYtxDZA0ARNSv2BEE-yKtn2gxtOZM8Ou-0Jab0yMXdthoLcmoqO9p3d7b7adpfNghhVdJNF3fnlOTlqziXjx-07J28P9a_3IFs_zp3q2YFYo2LGsdMZabFFCU5kGqrZRYBB54ZytMINC5bnISm5L5RppGpSJhrJABcJlSk7J1bg7hP7jE-NOr_vP4NOXWlS8lEkt8kSJkbKhjzFgq4fQbU3Yaw76EEuPsXSKpX9i6cO0HKWYYL_E8Df9j_UNHnpsKQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918348165</pqid></control><display><type>article</type><title>Research for an Adaptive Classifier Based on Dynamic Graph Learning</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Li, Li ; Zhao, Kaiyi ; Sun, Ruizhi ; Cai, Saihua ; Liu, Yongtao</creator><creatorcontrib>Li, Li ; Zhao, Kaiyi ; Sun, Ruizhi ; Cai, Saihua ; Liu, Yongtao</creatorcontrib><description>Extreme Learning Machine (ELM) is a representative learning algorithm commonly used in data classification and prediction. In the previous literature on ELM, there are few works that pay attention to the relationship and geometric information of data, it may bring about the relatively low accuracy and poorer performance. Combining the classic ELM algorithm and the basic knowledge of dynamic graph learning, considering the geometric information between two data points to construct the graph matrix, an adaptive graph classifier on the basis of extreme learning machine is presented in our work. Besides, a matrix preserving the geometric information of the data is constructed from the original data and adaptively update during each training iteration. To do this, we use an alternative optimization strategy to update the graph matrix, so that the new classifier can adapt to the graph matrix and the graph matrix can update the classifier. The results on fifteen real data sets demonstrate that the proposed method outperforms in binary classification and multi-classification tasks.</description><identifier>ISSN: 1370-4621</identifier><identifier>EISSN: 1573-773X</identifier><identifier>DOI: 10.1007/s11063-021-10452-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accuracy ; Algorithms ; Artificial Intelligence ; Artificial neural networks ; Classification ; Classifiers ; Complex Systems ; Computational Intelligence ; Computer Science ; Data points ; Efficiency ; Feature selection ; Graphs ; Learning ; Machine learning ; Optimization</subject><ispartof>Neural processing letters, 2022-08, Vol.54 (4), p.2675-2693</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-48daccefe30b9ab09fb70aee16ddc9e4067552481c87db3abe3cef086e702d473</cites><orcidid>0000-0001-7267-5283</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11063-021-10452-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918348165?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21386,27922,27923,33742,41486,42555,43803,51317,64383,64387,72239</link.rule.ids></links><search><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Zhao, Kaiyi</creatorcontrib><creatorcontrib>Sun, Ruizhi</creatorcontrib><creatorcontrib>Cai, Saihua</creatorcontrib><creatorcontrib>Liu, Yongtao</creatorcontrib><title>Research for an Adaptive Classifier Based on Dynamic Graph Learning</title><title>Neural processing letters</title><addtitle>Neural Process Lett</addtitle><description>Extreme Learning Machine (ELM) is a representative learning algorithm commonly used in data classification and prediction. In the previous literature on ELM, there are few works that pay attention to the relationship and geometric information of data, it may bring about the relatively low accuracy and poorer performance. Combining the classic ELM algorithm and the basic knowledge of dynamic graph learning, considering the geometric information between two data points to construct the graph matrix, an adaptive graph classifier on the basis of extreme learning machine is presented in our work. Besides, a matrix preserving the geometric information of the data is constructed from the original data and adaptively update during each training iteration. To do this, we use an alternative optimization strategy to update the graph matrix, so that the new classifier can adapt to the graph matrix and the graph matrix can update the classifier. The results on fifteen real data sets demonstrate that the proposed method outperforms in binary classification and multi-classification tasks.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Complex Systems</subject><subject>Computational Intelligence</subject><subject>Computer Science</subject><subject>Data points</subject><subject>Efficiency</subject><subject>Feature selection</subject><subject>Graphs</subject><subject>Learning</subject><subject>Machine learning</subject><subject>Optimization</subject><issn>1370-4621</issn><issn>1573-773X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEFLwzAYhoMoOKd_wFPAc_RL0jbtcVadwkAQBW8hTb5uHVtakyns35tZwZunfIfneQMPIZccrjmAuomcQyEZCM44ZLlg6ohMeK4kU0q-H6dbKmBZIfgpOYtxDZA0ARNSv2BEE-yKtn2gxtOZM8Ou-0Jab0yMXdthoLcmoqO9p3d7b7adpfNghhVdJNF3fnlOTlqziXjx-07J28P9a_3IFs_zp3q2YFYo2LGsdMZabFFCU5kGqrZRYBB54ZytMINC5bnISm5L5RppGpSJhrJABcJlSk7J1bg7hP7jE-NOr_vP4NOXWlS8lEkt8kSJkbKhjzFgq4fQbU3Yaw76EEuPsXSKpX9i6cO0HKWYYL_E8Df9j_UNHnpsKQ</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Li, Li</creator><creator>Zhao, Kaiyi</creator><creator>Sun, Ruizhi</creator><creator>Cai, Saihua</creator><creator>Liu, Yongtao</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><orcidid>https://orcid.org/0000-0001-7267-5283</orcidid></search><sort><creationdate>20220801</creationdate><title>Research for an Adaptive Classifier Based on Dynamic Graph Learning</title><author>Li, Li ; Zhao, Kaiyi ; Sun, Ruizhi ; Cai, Saihua ; Liu, Yongtao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-48daccefe30b9ab09fb70aee16ddc9e4067552481c87db3abe3cef086e702d473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Complex Systems</topic><topic>Computational Intelligence</topic><topic>Computer Science</topic><topic>Data points</topic><topic>Efficiency</topic><topic>Feature selection</topic><topic>Graphs</topic><topic>Learning</topic><topic>Machine learning</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Zhao, Kaiyi</creatorcontrib><creatorcontrib>Sun, Ruizhi</creatorcontrib><creatorcontrib>Cai, Saihua</creatorcontrib><creatorcontrib>Liu, Yongtao</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><jtitle>Neural processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Li</au><au>Zhao, Kaiyi</au><au>Sun, Ruizhi</au><au>Cai, Saihua</au><au>Liu, Yongtao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research for an Adaptive Classifier Based on Dynamic Graph Learning</atitle><jtitle>Neural processing letters</jtitle><stitle>Neural Process Lett</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>54</volume><issue>4</issue><spage>2675</spage><epage>2693</epage><pages>2675-2693</pages><issn>1370-4621</issn><eissn>1573-773X</eissn><abstract>Extreme Learning Machine (ELM) is a representative learning algorithm commonly used in data classification and prediction. In the previous literature on ELM, there are few works that pay attention to the relationship and geometric information of data, it may bring about the relatively low accuracy and poorer performance. Combining the classic ELM algorithm and the basic knowledge of dynamic graph learning, considering the geometric information between two data points to construct the graph matrix, an adaptive graph classifier on the basis of extreme learning machine is presented in our work. Besides, a matrix preserving the geometric information of the data is constructed from the original data and adaptively update during each training iteration. To do this, we use an alternative optimization strategy to update the graph matrix, so that the new classifier can adapt to the graph matrix and the graph matrix can update the classifier. The results on fifteen real data sets demonstrate that the proposed method outperforms in binary classification and multi-classification tasks.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11063-021-10452-7</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-7267-5283</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1370-4621 |
ispartof | Neural processing letters, 2022-08, Vol.54 (4), p.2675-2693 |
issn | 1370-4621 1573-773X |
language | eng |
recordid | cdi_proquest_journals_2918348165 |
source | ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Accuracy Algorithms Artificial Intelligence Artificial neural networks Classification Classifiers Complex Systems Computational Intelligence Computer Science Data points Efficiency Feature selection Graphs Learning Machine learning Optimization |
title | Research for an Adaptive Classifier Based on Dynamic Graph Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T20%3A45%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20for%20an%20Adaptive%20Classifier%20Based%20on%20Dynamic%20Graph%20Learning&rft.jtitle=Neural%20processing%20letters&rft.au=Li,%20Li&rft.date=2022-08-01&rft.volume=54&rft.issue=4&rft.spage=2675&rft.epage=2693&rft.pages=2675-2693&rft.issn=1370-4621&rft.eissn=1573-773X&rft_id=info:doi/10.1007/s11063-021-10452-7&rft_dat=%3Cproquest_cross%3E2918348165%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918348165&rft_id=info:pmid/&rfr_iscdi=true |