Power-Rate Synchronization of Fractional-Order Nonautonomous Neural Networks with Heterogeneous Proportional Delays
This paper is concerned with the problem of global power-rate synchronization of fractional-order nonautonomous neural networks with heterogeneous proportional delays. By utilizing the Leibniz rule for fractional differentiation and an extended comparison technique, delay-dependent conditions are de...
Gespeichert in:
Veröffentlicht in: | Neural processing letters 2018-02, Vol.47 (1), p.139-151 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 151 |
---|---|
container_issue | 1 |
container_start_page | 139 |
container_title | Neural processing letters |
container_volume | 47 |
creator | Kinh, C. T. Hien, L. V. Ke, T. D. |
description | This paper is concerned with the problem of global power-rate synchronization of fractional-order nonautonomous neural networks with heterogeneous proportional delays. By utilizing the Leibniz rule for fractional differentiation and an extended comparison technique, delay-dependent conditions are derived to ensure that the considered fractional-order neural network model is globally synchronous with a power decaying rate. Two examples with numerical simulations are given to demonstrate the effectiveness of the obtained results. |
doi_str_mv | 10.1007/s11063-017-9637-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918343613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918343613</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-376681170b32980922f465d64452cbc01826fcfaa47887ebbfc120949dd3da3f3</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wF3AdTSPaTKzlPqoUNriA9yFTCbTTm0n9WaG0v56M4zgytU9i-87XA5C14zeMkrVXWCMSkEoUySTQpHjCRqwkRJEKfF5GrNQlCSSs3N0EcKa0mhxOkBh4fcOyKtpHH471HYFvq6Opql8jX2Jn8DYLpsNmUPhAM9ibhtf-61vA565Fswmnmbv4SvgfdWs8MQ1DvzS1a5DFuB3HvoO_OA25hAu0VlpNsFd_d4h-nh6fB9PyHT-_DK-nxIrmGyIUFKmjCmaC56lNOO8TOSokEky4ja3lKVclrY0JlFpqlyel5ZxmiVZUYjCiFIM0U3fuwP_3brQ6LVvIf4RNM9YKhIhmYgU6ykLPgRwpd5BtTVw0Izqblvdb6vjtrrbVh-jw3snRLZeOvhr_l_6AbKFfwI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918343613</pqid></control><display><type>article</type><title>Power-Rate Synchronization of Fractional-Order Nonautonomous Neural Networks with Heterogeneous Proportional Delays</title><source>SpringerLink Journals</source><source>ProQuest Central</source><creator>Kinh, C. T. ; Hien, L. V. ; Ke, T. D.</creator><creatorcontrib>Kinh, C. T. ; Hien, L. V. ; Ke, T. D.</creatorcontrib><description>This paper is concerned with the problem of global power-rate synchronization of fractional-order nonautonomous neural networks with heterogeneous proportional delays. By utilizing the Leibniz rule for fractional differentiation and an extended comparison technique, delay-dependent conditions are derived to ensure that the considered fractional-order neural network model is globally synchronous with a power decaying rate. Two examples with numerical simulations are given to demonstrate the effectiveness of the obtained results.</description><identifier>ISSN: 1370-4621</identifier><identifier>EISSN: 1573-773X</identifier><identifier>DOI: 10.1007/s11063-017-9637-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial Intelligence ; Calculus ; Complex Systems ; Computational Intelligence ; Computer Science ; Mathematical functions ; Mathematical models ; Neural networks ; Synchronism</subject><ispartof>Neural processing letters, 2018-02, Vol.47 (1), p.139-151</ispartof><rights>Springer Science+Business Media New York 2017</rights><rights>Springer Science+Business Media New York 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-376681170b32980922f465d64452cbc01826fcfaa47887ebbfc120949dd3da3f3</citedby><cites>FETCH-LOGICAL-c316t-376681170b32980922f465d64452cbc01826fcfaa47887ebbfc120949dd3da3f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11063-017-9637-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918343613?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Kinh, C. T.</creatorcontrib><creatorcontrib>Hien, L. V.</creatorcontrib><creatorcontrib>Ke, T. D.</creatorcontrib><title>Power-Rate Synchronization of Fractional-Order Nonautonomous Neural Networks with Heterogeneous Proportional Delays</title><title>Neural processing letters</title><addtitle>Neural Process Lett</addtitle><description>This paper is concerned with the problem of global power-rate synchronization of fractional-order nonautonomous neural networks with heterogeneous proportional delays. By utilizing the Leibniz rule for fractional differentiation and an extended comparison technique, delay-dependent conditions are derived to ensure that the considered fractional-order neural network model is globally synchronous with a power decaying rate. Two examples with numerical simulations are given to demonstrate the effectiveness of the obtained results.</description><subject>Artificial Intelligence</subject><subject>Calculus</subject><subject>Complex Systems</subject><subject>Computational Intelligence</subject><subject>Computer Science</subject><subject>Mathematical functions</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Synchronism</subject><issn>1370-4621</issn><issn>1573-773X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kEtLAzEUhYMoWKs_wF3AdTSPaTKzlPqoUNriA9yFTCbTTm0n9WaG0v56M4zgytU9i-87XA5C14zeMkrVXWCMSkEoUySTQpHjCRqwkRJEKfF5GrNQlCSSs3N0EcKa0mhxOkBh4fcOyKtpHH471HYFvq6Opql8jX2Jn8DYLpsNmUPhAM9ibhtf-61vA565Fswmnmbv4SvgfdWs8MQ1DvzS1a5DFuB3HvoO_OA25hAu0VlpNsFd_d4h-nh6fB9PyHT-_DK-nxIrmGyIUFKmjCmaC56lNOO8TOSokEky4ja3lKVclrY0JlFpqlyel5ZxmiVZUYjCiFIM0U3fuwP_3brQ6LVvIf4RNM9YKhIhmYgU6ykLPgRwpd5BtTVw0Izqblvdb6vjtrrbVh-jw3snRLZeOvhr_l_6AbKFfwI</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Kinh, C. T.</creator><creator>Hien, L. V.</creator><creator>Ke, T. D.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope></search><sort><creationdate>20180201</creationdate><title>Power-Rate Synchronization of Fractional-Order Nonautonomous Neural Networks with Heterogeneous Proportional Delays</title><author>Kinh, C. T. ; Hien, L. V. ; Ke, T. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-376681170b32980922f465d64452cbc01826fcfaa47887ebbfc120949dd3da3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial Intelligence</topic><topic>Calculus</topic><topic>Complex Systems</topic><topic>Computational Intelligence</topic><topic>Computer Science</topic><topic>Mathematical functions</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Synchronism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kinh, C. T.</creatorcontrib><creatorcontrib>Hien, L. V.</creatorcontrib><creatorcontrib>Ke, T. D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><jtitle>Neural processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kinh, C. T.</au><au>Hien, L. V.</au><au>Ke, T. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Power-Rate Synchronization of Fractional-Order Nonautonomous Neural Networks with Heterogeneous Proportional Delays</atitle><jtitle>Neural processing letters</jtitle><stitle>Neural Process Lett</stitle><date>2018-02-01</date><risdate>2018</risdate><volume>47</volume><issue>1</issue><spage>139</spage><epage>151</epage><pages>139-151</pages><issn>1370-4621</issn><eissn>1573-773X</eissn><abstract>This paper is concerned with the problem of global power-rate synchronization of fractional-order nonautonomous neural networks with heterogeneous proportional delays. By utilizing the Leibniz rule for fractional differentiation and an extended comparison technique, delay-dependent conditions are derived to ensure that the considered fractional-order neural network model is globally synchronous with a power decaying rate. Two examples with numerical simulations are given to demonstrate the effectiveness of the obtained results.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11063-017-9637-z</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1370-4621 |
ispartof | Neural processing letters, 2018-02, Vol.47 (1), p.139-151 |
issn | 1370-4621 1573-773X |
language | eng |
recordid | cdi_proquest_journals_2918343613 |
source | SpringerLink Journals; ProQuest Central |
subjects | Artificial Intelligence Calculus Complex Systems Computational Intelligence Computer Science Mathematical functions Mathematical models Neural networks Synchronism |
title | Power-Rate Synchronization of Fractional-Order Nonautonomous Neural Networks with Heterogeneous Proportional Delays |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T10%3A34%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Power-Rate%20Synchronization%20of%20Fractional-Order%20Nonautonomous%20Neural%20Networks%20with%20Heterogeneous%20Proportional%20Delays&rft.jtitle=Neural%20processing%20letters&rft.au=Kinh,%20C.%20T.&rft.date=2018-02-01&rft.volume=47&rft.issue=1&rft.spage=139&rft.epage=151&rft.pages=139-151&rft.issn=1370-4621&rft.eissn=1573-773X&rft_id=info:doi/10.1007/s11063-017-9637-z&rft_dat=%3Cproquest_cross%3E2918343613%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918343613&rft_id=info:pmid/&rfr_iscdi=true |