Detecting Ordinal Subcascades

Ordinal classifier cascades are constrained by a hypothesised order of the semantic class labels of a dataset. This order determines the overall structure of the decision regions in feature space. Assuming the correct order on these class labels will allow a high generalisation performance, while an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural processing letters 2020-12, Vol.52 (3), p.2583-2605
Hauptverfasser: Lausser, Ludwig, Schäfer, Lisa M., Kühlwein, Silke D., Kestler, Angelika M. R., Kestler, Hans A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2605
container_issue 3
container_start_page 2583
container_title Neural processing letters
container_volume 52
creator Lausser, Ludwig
Schäfer, Lisa M.
Kühlwein, Silke D.
Kestler, Angelika M. R.
Kestler, Hans A.
description Ordinal classifier cascades are constrained by a hypothesised order of the semantic class labels of a dataset. This order determines the overall structure of the decision regions in feature space. Assuming the correct order on these class labels will allow a high generalisation performance, while an incorrect one will lead to diminished results. In this way ordinal classifier systems can facilitate explorative data analysis allowing to screen for potential candidate orders of the class labels. Previously, we have shown that screening is possible for total orders of all class labels. However, as datasets might comprise samples of ordinal as well as non-ordinal classes, the assumption of a total ordering might be not appropriate. An analysis of subsets of classes is required to detect such hidden ordinal substructures. In this work, we devise a novel screening procedure for exhaustive evaluations of all order permutations of all subsets of classes by bounding the number of enumerations we have to examine. Experiments with multi-class data from diverse applications revealed ordinal substructures that generate new and support known relations.
doi_str_mv 10.1007/s11063-020-10362-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918342817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918342817</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-60f24615be3d779ca3b78ebfbe7c64d20d2259a04855c3fd2230a0eaa8c89133</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AUFY8BydybRJepT1LyzswT14C0maLl3Wdk3ag9_eaAVvnmYG3u8x7zF2iXCDAOo2IYIkDgI4AknB4YjNsFTElaK347yTAl5IgafsLKUdQMYEzNjVfRiCH9puu1jHuu3sfvE6Om-Tt3VI5-yksfsULn7nnG0eHzbLZ75aP70s71bck6SBS2hEIbF0gWqlKm_JKR1c44LysqgF1EKUlYVCl6WnJl8EFoK12usKiebserI9xP5jDGkwu36M-ZdkRIWaCqFRZZWYVD72KcXQmENs3238NAjmuwUztWByMPPTgoEM0QSlLO62If5Z_0N9AXxWXVQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918342817</pqid></control><display><type>article</type><title>Detecting Ordinal Subcascades</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Lausser, Ludwig ; Schäfer, Lisa M. ; Kühlwein, Silke D. ; Kestler, Angelika M. R. ; Kestler, Hans A.</creator><creatorcontrib>Lausser, Ludwig ; Schäfer, Lisa M. ; Kühlwein, Silke D. ; Kestler, Angelika M. R. ; Kestler, Hans A.</creatorcontrib><description>Ordinal classifier cascades are constrained by a hypothesised order of the semantic class labels of a dataset. This order determines the overall structure of the decision regions in feature space. Assuming the correct order on these class labels will allow a high generalisation performance, while an incorrect one will lead to diminished results. In this way ordinal classifier systems can facilitate explorative data analysis allowing to screen for potential candidate orders of the class labels. Previously, we have shown that screening is possible for total orders of all class labels. However, as datasets might comprise samples of ordinal as well as non-ordinal classes, the assumption of a total ordering might be not appropriate. An analysis of subsets of classes is required to detect such hidden ordinal substructures. In this work, we devise a novel screening procedure for exhaustive evaluations of all order permutations of all subsets of classes by bounding the number of enumerations we have to examine. Experiments with multi-class data from diverse applications revealed ordinal substructures that generate new and support known relations.</description><identifier>ISSN: 1370-4621</identifier><identifier>EISSN: 1573-773X</identifier><identifier>DOI: 10.1007/s11063-020-10362-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accuracy ; Algorithms ; Artificial Intelligence ; Classification ; Classifiers ; Complex Systems ; Computational Intelligence ; Computer Science ; Data analysis ; Datasets ; Hypotheses ; Labels ; Permutations ; Screening ; Semantics</subject><ispartof>Neural processing letters, 2020-12, Vol.52 (3), p.2583-2605</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-60f24615be3d779ca3b78ebfbe7c64d20d2259a04855c3fd2230a0eaa8c89133</citedby><cites>FETCH-LOGICAL-c363t-60f24615be3d779ca3b78ebfbe7c64d20d2259a04855c3fd2230a0eaa8c89133</cites><orcidid>0000-0002-4759-5254</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11063-020-10362-0$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918342817?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,777,781,21369,27905,27906,33725,41469,42538,43786,51300,64364,64368,72218</link.rule.ids></links><search><creatorcontrib>Lausser, Ludwig</creatorcontrib><creatorcontrib>Schäfer, Lisa M.</creatorcontrib><creatorcontrib>Kühlwein, Silke D.</creatorcontrib><creatorcontrib>Kestler, Angelika M. R.</creatorcontrib><creatorcontrib>Kestler, Hans A.</creatorcontrib><title>Detecting Ordinal Subcascades</title><title>Neural processing letters</title><addtitle>Neural Process Lett</addtitle><description>Ordinal classifier cascades are constrained by a hypothesised order of the semantic class labels of a dataset. This order determines the overall structure of the decision regions in feature space. Assuming the correct order on these class labels will allow a high generalisation performance, while an incorrect one will lead to diminished results. In this way ordinal classifier systems can facilitate explorative data analysis allowing to screen for potential candidate orders of the class labels. Previously, we have shown that screening is possible for total orders of all class labels. However, as datasets might comprise samples of ordinal as well as non-ordinal classes, the assumption of a total ordering might be not appropriate. An analysis of subsets of classes is required to detect such hidden ordinal substructures. In this work, we devise a novel screening procedure for exhaustive evaluations of all order permutations of all subsets of classes by bounding the number of enumerations we have to examine. Experiments with multi-class data from diverse applications revealed ordinal substructures that generate new and support known relations.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Complex Systems</subject><subject>Computational Intelligence</subject><subject>Computer Science</subject><subject>Data analysis</subject><subject>Datasets</subject><subject>Hypotheses</subject><subject>Labels</subject><subject>Permutations</subject><subject>Screening</subject><subject>Semantics</subject><issn>1370-4621</issn><issn>1573-773X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE9LxDAQxYMouK5-AUFY8BydybRJepT1LyzswT14C0maLl3Wdk3ag9_eaAVvnmYG3u8x7zF2iXCDAOo2IYIkDgI4AknB4YjNsFTElaK347yTAl5IgafsLKUdQMYEzNjVfRiCH9puu1jHuu3sfvE6Om-Tt3VI5-yksfsULn7nnG0eHzbLZ75aP70s71bck6SBS2hEIbF0gWqlKm_JKR1c44LysqgF1EKUlYVCl6WnJl8EFoK12usKiebserI9xP5jDGkwu36M-ZdkRIWaCqFRZZWYVD72KcXQmENs3238NAjmuwUztWByMPPTgoEM0QSlLO62If5Z_0N9AXxWXVQ</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Lausser, Ludwig</creator><creator>Schäfer, Lisa M.</creator><creator>Kühlwein, Silke D.</creator><creator>Kestler, Angelika M. R.</creator><creator>Kestler, Hans A.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><orcidid>https://orcid.org/0000-0002-4759-5254</orcidid></search><sort><creationdate>20201201</creationdate><title>Detecting Ordinal Subcascades</title><author>Lausser, Ludwig ; Schäfer, Lisa M. ; Kühlwein, Silke D. ; Kestler, Angelika M. R. ; Kestler, Hans A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-60f24615be3d779ca3b78ebfbe7c64d20d2259a04855c3fd2230a0eaa8c89133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Complex Systems</topic><topic>Computational Intelligence</topic><topic>Computer Science</topic><topic>Data analysis</topic><topic>Datasets</topic><topic>Hypotheses</topic><topic>Labels</topic><topic>Permutations</topic><topic>Screening</topic><topic>Semantics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lausser, Ludwig</creatorcontrib><creatorcontrib>Schäfer, Lisa M.</creatorcontrib><creatorcontrib>Kühlwein, Silke D.</creatorcontrib><creatorcontrib>Kestler, Angelika M. R.</creatorcontrib><creatorcontrib>Kestler, Hans A.</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><jtitle>Neural processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lausser, Ludwig</au><au>Schäfer, Lisa M.</au><au>Kühlwein, Silke D.</au><au>Kestler, Angelika M. R.</au><au>Kestler, Hans A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detecting Ordinal Subcascades</atitle><jtitle>Neural processing letters</jtitle><stitle>Neural Process Lett</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>52</volume><issue>3</issue><spage>2583</spage><epage>2605</epage><pages>2583-2605</pages><issn>1370-4621</issn><eissn>1573-773X</eissn><abstract>Ordinal classifier cascades are constrained by a hypothesised order of the semantic class labels of a dataset. This order determines the overall structure of the decision regions in feature space. Assuming the correct order on these class labels will allow a high generalisation performance, while an incorrect one will lead to diminished results. In this way ordinal classifier systems can facilitate explorative data analysis allowing to screen for potential candidate orders of the class labels. Previously, we have shown that screening is possible for total orders of all class labels. However, as datasets might comprise samples of ordinal as well as non-ordinal classes, the assumption of a total ordering might be not appropriate. An analysis of subsets of classes is required to detect such hidden ordinal substructures. In this work, we devise a novel screening procedure for exhaustive evaluations of all order permutations of all subsets of classes by bounding the number of enumerations we have to examine. Experiments with multi-class data from diverse applications revealed ordinal substructures that generate new and support known relations.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11063-020-10362-0</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-4759-5254</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1370-4621
ispartof Neural processing letters, 2020-12, Vol.52 (3), p.2583-2605
issn 1370-4621
1573-773X
language eng
recordid cdi_proquest_journals_2918342817
source ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Accuracy
Algorithms
Artificial Intelligence
Classification
Classifiers
Complex Systems
Computational Intelligence
Computer Science
Data analysis
Datasets
Hypotheses
Labels
Permutations
Screening
Semantics
title Detecting Ordinal Subcascades
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T13%3A36%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detecting%20Ordinal%20Subcascades&rft.jtitle=Neural%20processing%20letters&rft.au=Lausser,%20Ludwig&rft.date=2020-12-01&rft.volume=52&rft.issue=3&rft.spage=2583&rft.epage=2605&rft.pages=2583-2605&rft.issn=1370-4621&rft.eissn=1573-773X&rft_id=info:doi/10.1007/s11063-020-10362-0&rft_dat=%3Cproquest_cross%3E2918342817%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918342817&rft_id=info:pmid/&rfr_iscdi=true