PSSA: Polar Coordinate Salp Swarm Algorithm for Curve Design Problems
This paper proposes a modified optimization algorithm called polar coordinate salp swarm algorithm (PSSA). The main inspiration of PSSA is the aggregation chain and foraging trajectory of salp is spiral. Some curves are extremely complex when represented in Cartesian coordinate system, but if they a...
Gespeichert in:
Veröffentlicht in: | Neural processing letters 2020-08, Vol.52 (1), p.615-645 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 645 |
---|---|
container_issue | 1 |
container_start_page | 615 |
container_title | Neural processing letters |
container_volume | 52 |
creator | Xiang, Zhehong Zhou, Yongquan Luo, Qifang Wen, Chunming |
description | This paper proposes a modified optimization algorithm called polar coordinate salp swarm algorithm (PSSA). The main inspiration of PSSA is the aggregation chain and foraging trajectory of salp is spiral. Some curves are extremely complex when represented in Cartesian coordinate system, but if they are expressed in polar coordinates, it becomes very simple and easy to handle, and polar coordinates are widely used in scientific computing and engineering issues. It will be more intuitive and convenient if use polar coordinates to define the foraging and aggregation process of salps. At the same time, different from other algorithms proposed in the past, the PSSA directly initialize individuals in polar space instead of using mapping functions to convert to polar coordinates, change the position of particles by updating polar angles and polar diameters. This algorithm is tested on two complex polar coordinate equations, several curve approximation problems and engineering design problems using PSSA. The experimental results illustrated that the proposed PSSA algorithm is superior to the state-of-the-art metaheuristic algorithms in terms of the performance measures. |
doi_str_mv | 10.1007/s11063-020-10271-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918342699</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918342699</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-b3644d1f9900ce90ef7a8dbbab8ee29e18e83e6c8b99120417baae789a26560a3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQQIMouK7-AU8Bz9FJ0m0ab8u6fsCChSp4C2l3unZpmzXpKv57oxW8eZo5vDcDj5BzDpccQF0FziGVDAQwDkJxJg7IhM-UZErJl8O4SwUsSQU_JichbAGiJmBClnlRzK9p7lrr6cI5v256OyAtbLujxYf1HZ23G-eb4bWjtYvM3r8jvcHQbHqae1e22IVTclTbNuDZ75yS59vl0-KerR7vHhbzFask1wMrZZoka15rDVChBqyVzdZlacsMUWjkGWYS0yorteYCEq5Ka1Fl2op0loKVU3Ix3t1597bHMJit2_s-vjRC80wmItU6UmKkKu9C8FibnW866z8NB_Ody4y5TCxgfnIZESU5SiHC_Qb93-l_rC9G1mv2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918342699</pqid></control><display><type>article</type><title>PSSA: Polar Coordinate Salp Swarm Algorithm for Curve Design Problems</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central</source><creator>Xiang, Zhehong ; Zhou, Yongquan ; Luo, Qifang ; Wen, Chunming</creator><creatorcontrib>Xiang, Zhehong ; Zhou, Yongquan ; Luo, Qifang ; Wen, Chunming</creatorcontrib><description>This paper proposes a modified optimization algorithm called polar coordinate salp swarm algorithm (PSSA). The main inspiration of PSSA is the aggregation chain and foraging trajectory of salp is spiral. Some curves are extremely complex when represented in Cartesian coordinate system, but if they are expressed in polar coordinates, it becomes very simple and easy to handle, and polar coordinates are widely used in scientific computing and engineering issues. It will be more intuitive and convenient if use polar coordinates to define the foraging and aggregation process of salps. At the same time, different from other algorithms proposed in the past, the PSSA directly initialize individuals in polar space instead of using mapping functions to convert to polar coordinates, change the position of particles by updating polar angles and polar diameters. This algorithm is tested on two complex polar coordinate equations, several curve approximation problems and engineering design problems using PSSA. The experimental results illustrated that the proposed PSSA algorithm is superior to the state-of-the-art metaheuristic algorithms in terms of the performance measures.</description><identifier>ISSN: 1370-4621</identifier><identifier>EISSN: 1573-773X</identifier><identifier>DOI: 10.1007/s11063-020-10271-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Artificial Intelligence ; Cartesian coordinates ; Complex Systems ; Computational Intelligence ; Computer Science ; Design engineering ; Diameters ; Feature selection ; Genetic algorithms ; Heuristic methods ; Mathematics ; Number systems ; Optimization algorithms ; Polar coordinates</subject><ispartof>Neural processing letters, 2020-08, Vol.52 (1), p.615-645</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-b3644d1f9900ce90ef7a8dbbab8ee29e18e83e6c8b99120417baae789a26560a3</citedby><cites>FETCH-LOGICAL-c319t-b3644d1f9900ce90ef7a8dbbab8ee29e18e83e6c8b99120417baae789a26560a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11063-020-10271-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918342699?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Xiang, Zhehong</creatorcontrib><creatorcontrib>Zhou, Yongquan</creatorcontrib><creatorcontrib>Luo, Qifang</creatorcontrib><creatorcontrib>Wen, Chunming</creatorcontrib><title>PSSA: Polar Coordinate Salp Swarm Algorithm for Curve Design Problems</title><title>Neural processing letters</title><addtitle>Neural Process Lett</addtitle><description>This paper proposes a modified optimization algorithm called polar coordinate salp swarm algorithm (PSSA). The main inspiration of PSSA is the aggregation chain and foraging trajectory of salp is spiral. Some curves are extremely complex when represented in Cartesian coordinate system, but if they are expressed in polar coordinates, it becomes very simple and easy to handle, and polar coordinates are widely used in scientific computing and engineering issues. It will be more intuitive and convenient if use polar coordinates to define the foraging and aggregation process of salps. At the same time, different from other algorithms proposed in the past, the PSSA directly initialize individuals in polar space instead of using mapping functions to convert to polar coordinates, change the position of particles by updating polar angles and polar diameters. This algorithm is tested on two complex polar coordinate equations, several curve approximation problems and engineering design problems using PSSA. The experimental results illustrated that the proposed PSSA algorithm is superior to the state-of-the-art metaheuristic algorithms in terms of the performance measures.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Cartesian coordinates</subject><subject>Complex Systems</subject><subject>Computational Intelligence</subject><subject>Computer Science</subject><subject>Design engineering</subject><subject>Diameters</subject><subject>Feature selection</subject><subject>Genetic algorithms</subject><subject>Heuristic methods</subject><subject>Mathematics</subject><subject>Number systems</subject><subject>Optimization algorithms</subject><subject>Polar coordinates</subject><issn>1370-4621</issn><issn>1573-773X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1LxDAQQIMouK7-AU8Bz9FJ0m0ab8u6fsCChSp4C2l3unZpmzXpKv57oxW8eZo5vDcDj5BzDpccQF0FziGVDAQwDkJxJg7IhM-UZErJl8O4SwUsSQU_JichbAGiJmBClnlRzK9p7lrr6cI5v256OyAtbLujxYf1HZ23G-eb4bWjtYvM3r8jvcHQbHqae1e22IVTclTbNuDZ75yS59vl0-KerR7vHhbzFask1wMrZZoka15rDVChBqyVzdZlacsMUWjkGWYS0yorteYCEq5Ka1Fl2op0loKVU3Ix3t1597bHMJit2_s-vjRC80wmItU6UmKkKu9C8FibnW866z8NB_Ody4y5TCxgfnIZESU5SiHC_Qb93-l_rC9G1mv2</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Xiang, Zhehong</creator><creator>Zhou, Yongquan</creator><creator>Luo, Qifang</creator><creator>Wen, Chunming</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope></search><sort><creationdate>20200801</creationdate><title>PSSA: Polar Coordinate Salp Swarm Algorithm for Curve Design Problems</title><author>Xiang, Zhehong ; Zhou, Yongquan ; Luo, Qifang ; Wen, Chunming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-b3644d1f9900ce90ef7a8dbbab8ee29e18e83e6c8b99120417baae789a26560a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Cartesian coordinates</topic><topic>Complex Systems</topic><topic>Computational Intelligence</topic><topic>Computer Science</topic><topic>Design engineering</topic><topic>Diameters</topic><topic>Feature selection</topic><topic>Genetic algorithms</topic><topic>Heuristic methods</topic><topic>Mathematics</topic><topic>Number systems</topic><topic>Optimization algorithms</topic><topic>Polar coordinates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiang, Zhehong</creatorcontrib><creatorcontrib>Zhou, Yongquan</creatorcontrib><creatorcontrib>Luo, Qifang</creatorcontrib><creatorcontrib>Wen, Chunming</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><jtitle>Neural processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiang, Zhehong</au><au>Zhou, Yongquan</au><au>Luo, Qifang</au><au>Wen, Chunming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PSSA: Polar Coordinate Salp Swarm Algorithm for Curve Design Problems</atitle><jtitle>Neural processing letters</jtitle><stitle>Neural Process Lett</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>52</volume><issue>1</issue><spage>615</spage><epage>645</epage><pages>615-645</pages><issn>1370-4621</issn><eissn>1573-773X</eissn><abstract>This paper proposes a modified optimization algorithm called polar coordinate salp swarm algorithm (PSSA). The main inspiration of PSSA is the aggregation chain and foraging trajectory of salp is spiral. Some curves are extremely complex when represented in Cartesian coordinate system, but if they are expressed in polar coordinates, it becomes very simple and easy to handle, and polar coordinates are widely used in scientific computing and engineering issues. It will be more intuitive and convenient if use polar coordinates to define the foraging and aggregation process of salps. At the same time, different from other algorithms proposed in the past, the PSSA directly initialize individuals in polar space instead of using mapping functions to convert to polar coordinates, change the position of particles by updating polar angles and polar diameters. This algorithm is tested on two complex polar coordinate equations, several curve approximation problems and engineering design problems using PSSA. The experimental results illustrated that the proposed PSSA algorithm is superior to the state-of-the-art metaheuristic algorithms in terms of the performance measures.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11063-020-10271-2</doi><tpages>31</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1370-4621 |
ispartof | Neural processing letters, 2020-08, Vol.52 (1), p.615-645 |
issn | 1370-4621 1573-773X |
language | eng |
recordid | cdi_proquest_journals_2918342699 |
source | Springer Nature - Complete Springer Journals; ProQuest Central |
subjects | Algorithms Artificial Intelligence Cartesian coordinates Complex Systems Computational Intelligence Computer Science Design engineering Diameters Feature selection Genetic algorithms Heuristic methods Mathematics Number systems Optimization algorithms Polar coordinates |
title | PSSA: Polar Coordinate Salp Swarm Algorithm for Curve Design Problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T14%3A44%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PSSA:%20Polar%20Coordinate%20Salp%20Swarm%20Algorithm%20for%20Curve%20Design%20Problems&rft.jtitle=Neural%20processing%20letters&rft.au=Xiang,%20Zhehong&rft.date=2020-08-01&rft.volume=52&rft.issue=1&rft.spage=615&rft.epage=645&rft.pages=615-645&rft.issn=1370-4621&rft.eissn=1573-773X&rft_id=info:doi/10.1007/s11063-020-10271-2&rft_dat=%3Cproquest_cross%3E2918342699%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918342699&rft_id=info:pmid/&rfr_iscdi=true |