PSSA: Polar Coordinate Salp Swarm Algorithm for Curve Design Problems

This paper proposes a modified optimization algorithm called polar coordinate salp swarm algorithm (PSSA). The main inspiration of PSSA is the aggregation chain and foraging trajectory of salp is spiral. Some curves are extremely complex when represented in Cartesian coordinate system, but if they a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural processing letters 2020-08, Vol.52 (1), p.615-645
Hauptverfasser: Xiang, Zhehong, Zhou, Yongquan, Luo, Qifang, Wen, Chunming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 645
container_issue 1
container_start_page 615
container_title Neural processing letters
container_volume 52
creator Xiang, Zhehong
Zhou, Yongquan
Luo, Qifang
Wen, Chunming
description This paper proposes a modified optimization algorithm called polar coordinate salp swarm algorithm (PSSA). The main inspiration of PSSA is the aggregation chain and foraging trajectory of salp is spiral. Some curves are extremely complex when represented in Cartesian coordinate system, but if they are expressed in polar coordinates, it becomes very simple and easy to handle, and polar coordinates are widely used in scientific computing and engineering issues. It will be more intuitive and convenient if use polar coordinates to define the foraging and aggregation process of salps. At the same time, different from other algorithms proposed in the past, the PSSA directly initialize individuals in polar space instead of using mapping functions to convert to polar coordinates, change the position of particles by updating polar angles and polar diameters. This algorithm is tested on two complex polar coordinate equations, several curve approximation problems and engineering design problems using PSSA. The experimental results illustrated that the proposed PSSA algorithm is superior to the state-of-the-art metaheuristic algorithms in terms of the performance measures.
doi_str_mv 10.1007/s11063-020-10271-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918342699</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918342699</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-b3644d1f9900ce90ef7a8dbbab8ee29e18e83e6c8b99120417baae789a26560a3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQQIMouK7-AU8Bz9FJ0m0ab8u6fsCChSp4C2l3unZpmzXpKv57oxW8eZo5vDcDj5BzDpccQF0FziGVDAQwDkJxJg7IhM-UZErJl8O4SwUsSQU_JichbAGiJmBClnlRzK9p7lrr6cI5v256OyAtbLujxYf1HZ23G-eb4bWjtYvM3r8jvcHQbHqae1e22IVTclTbNuDZ75yS59vl0-KerR7vHhbzFask1wMrZZoka15rDVChBqyVzdZlacsMUWjkGWYS0yorteYCEq5Ka1Fl2op0loKVU3Ix3t1597bHMJit2_s-vjRC80wmItU6UmKkKu9C8FibnW866z8NB_Ody4y5TCxgfnIZESU5SiHC_Qb93-l_rC9G1mv2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918342699</pqid></control><display><type>article</type><title>PSSA: Polar Coordinate Salp Swarm Algorithm for Curve Design Problems</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central</source><creator>Xiang, Zhehong ; Zhou, Yongquan ; Luo, Qifang ; Wen, Chunming</creator><creatorcontrib>Xiang, Zhehong ; Zhou, Yongquan ; Luo, Qifang ; Wen, Chunming</creatorcontrib><description>This paper proposes a modified optimization algorithm called polar coordinate salp swarm algorithm (PSSA). The main inspiration of PSSA is the aggregation chain and foraging trajectory of salp is spiral. Some curves are extremely complex when represented in Cartesian coordinate system, but if they are expressed in polar coordinates, it becomes very simple and easy to handle, and polar coordinates are widely used in scientific computing and engineering issues. It will be more intuitive and convenient if use polar coordinates to define the foraging and aggregation process of salps. At the same time, different from other algorithms proposed in the past, the PSSA directly initialize individuals in polar space instead of using mapping functions to convert to polar coordinates, change the position of particles by updating polar angles and polar diameters. This algorithm is tested on two complex polar coordinate equations, several curve approximation problems and engineering design problems using PSSA. The experimental results illustrated that the proposed PSSA algorithm is superior to the state-of-the-art metaheuristic algorithms in terms of the performance measures.</description><identifier>ISSN: 1370-4621</identifier><identifier>EISSN: 1573-773X</identifier><identifier>DOI: 10.1007/s11063-020-10271-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Artificial Intelligence ; Cartesian coordinates ; Complex Systems ; Computational Intelligence ; Computer Science ; Design engineering ; Diameters ; Feature selection ; Genetic algorithms ; Heuristic methods ; Mathematics ; Number systems ; Optimization algorithms ; Polar coordinates</subject><ispartof>Neural processing letters, 2020-08, Vol.52 (1), p.615-645</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-b3644d1f9900ce90ef7a8dbbab8ee29e18e83e6c8b99120417baae789a26560a3</citedby><cites>FETCH-LOGICAL-c319t-b3644d1f9900ce90ef7a8dbbab8ee29e18e83e6c8b99120417baae789a26560a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11063-020-10271-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918342699?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Xiang, Zhehong</creatorcontrib><creatorcontrib>Zhou, Yongquan</creatorcontrib><creatorcontrib>Luo, Qifang</creatorcontrib><creatorcontrib>Wen, Chunming</creatorcontrib><title>PSSA: Polar Coordinate Salp Swarm Algorithm for Curve Design Problems</title><title>Neural processing letters</title><addtitle>Neural Process Lett</addtitle><description>This paper proposes a modified optimization algorithm called polar coordinate salp swarm algorithm (PSSA). The main inspiration of PSSA is the aggregation chain and foraging trajectory of salp is spiral. Some curves are extremely complex when represented in Cartesian coordinate system, but if they are expressed in polar coordinates, it becomes very simple and easy to handle, and polar coordinates are widely used in scientific computing and engineering issues. It will be more intuitive and convenient if use polar coordinates to define the foraging and aggregation process of salps. At the same time, different from other algorithms proposed in the past, the PSSA directly initialize individuals in polar space instead of using mapping functions to convert to polar coordinates, change the position of particles by updating polar angles and polar diameters. This algorithm is tested on two complex polar coordinate equations, several curve approximation problems and engineering design problems using PSSA. The experimental results illustrated that the proposed PSSA algorithm is superior to the state-of-the-art metaheuristic algorithms in terms of the performance measures.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Cartesian coordinates</subject><subject>Complex Systems</subject><subject>Computational Intelligence</subject><subject>Computer Science</subject><subject>Design engineering</subject><subject>Diameters</subject><subject>Feature selection</subject><subject>Genetic algorithms</subject><subject>Heuristic methods</subject><subject>Mathematics</subject><subject>Number systems</subject><subject>Optimization algorithms</subject><subject>Polar coordinates</subject><issn>1370-4621</issn><issn>1573-773X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1LxDAQQIMouK7-AU8Bz9FJ0m0ab8u6fsCChSp4C2l3unZpmzXpKv57oxW8eZo5vDcDj5BzDpccQF0FziGVDAQwDkJxJg7IhM-UZErJl8O4SwUsSQU_JichbAGiJmBClnlRzK9p7lrr6cI5v256OyAtbLujxYf1HZ23G-eb4bWjtYvM3r8jvcHQbHqae1e22IVTclTbNuDZ75yS59vl0-KerR7vHhbzFask1wMrZZoka15rDVChBqyVzdZlacsMUWjkGWYS0yorteYCEq5Ka1Fl2op0loKVU3Ix3t1597bHMJit2_s-vjRC80wmItU6UmKkKu9C8FibnW866z8NB_Ody4y5TCxgfnIZESU5SiHC_Qb93-l_rC9G1mv2</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Xiang, Zhehong</creator><creator>Zhou, Yongquan</creator><creator>Luo, Qifang</creator><creator>Wen, Chunming</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope></search><sort><creationdate>20200801</creationdate><title>PSSA: Polar Coordinate Salp Swarm Algorithm for Curve Design Problems</title><author>Xiang, Zhehong ; Zhou, Yongquan ; Luo, Qifang ; Wen, Chunming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-b3644d1f9900ce90ef7a8dbbab8ee29e18e83e6c8b99120417baae789a26560a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Cartesian coordinates</topic><topic>Complex Systems</topic><topic>Computational Intelligence</topic><topic>Computer Science</topic><topic>Design engineering</topic><topic>Diameters</topic><topic>Feature selection</topic><topic>Genetic algorithms</topic><topic>Heuristic methods</topic><topic>Mathematics</topic><topic>Number systems</topic><topic>Optimization algorithms</topic><topic>Polar coordinates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiang, Zhehong</creatorcontrib><creatorcontrib>Zhou, Yongquan</creatorcontrib><creatorcontrib>Luo, Qifang</creatorcontrib><creatorcontrib>Wen, Chunming</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><jtitle>Neural processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiang, Zhehong</au><au>Zhou, Yongquan</au><au>Luo, Qifang</au><au>Wen, Chunming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PSSA: Polar Coordinate Salp Swarm Algorithm for Curve Design Problems</atitle><jtitle>Neural processing letters</jtitle><stitle>Neural Process Lett</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>52</volume><issue>1</issue><spage>615</spage><epage>645</epage><pages>615-645</pages><issn>1370-4621</issn><eissn>1573-773X</eissn><abstract>This paper proposes a modified optimization algorithm called polar coordinate salp swarm algorithm (PSSA). The main inspiration of PSSA is the aggregation chain and foraging trajectory of salp is spiral. Some curves are extremely complex when represented in Cartesian coordinate system, but if they are expressed in polar coordinates, it becomes very simple and easy to handle, and polar coordinates are widely used in scientific computing and engineering issues. It will be more intuitive and convenient if use polar coordinates to define the foraging and aggregation process of salps. At the same time, different from other algorithms proposed in the past, the PSSA directly initialize individuals in polar space instead of using mapping functions to convert to polar coordinates, change the position of particles by updating polar angles and polar diameters. This algorithm is tested on two complex polar coordinate equations, several curve approximation problems and engineering design problems using PSSA. The experimental results illustrated that the proposed PSSA algorithm is superior to the state-of-the-art metaheuristic algorithms in terms of the performance measures.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11063-020-10271-2</doi><tpages>31</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1370-4621
ispartof Neural processing letters, 2020-08, Vol.52 (1), p.615-645
issn 1370-4621
1573-773X
language eng
recordid cdi_proquest_journals_2918342699
source Springer Nature - Complete Springer Journals; ProQuest Central
subjects Algorithms
Artificial Intelligence
Cartesian coordinates
Complex Systems
Computational Intelligence
Computer Science
Design engineering
Diameters
Feature selection
Genetic algorithms
Heuristic methods
Mathematics
Number systems
Optimization algorithms
Polar coordinates
title PSSA: Polar Coordinate Salp Swarm Algorithm for Curve Design Problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T14%3A44%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PSSA:%20Polar%20Coordinate%20Salp%20Swarm%20Algorithm%20for%20Curve%20Design%20Problems&rft.jtitle=Neural%20processing%20letters&rft.au=Xiang,%20Zhehong&rft.date=2020-08-01&rft.volume=52&rft.issue=1&rft.spage=615&rft.epage=645&rft.pages=615-645&rft.issn=1370-4621&rft.eissn=1573-773X&rft_id=info:doi/10.1007/s11063-020-10271-2&rft_dat=%3Cproquest_cross%3E2918342699%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918342699&rft_id=info:pmid/&rfr_iscdi=true