Exponential Synchronization of Inertial Memristor-Based Neural Networks with Time Delay Using Average Impulsive Interval Approach

This paper deals with the impulsive synchronization problem for a class of inertial memristor-based neural networks (IMNNs) with time delays by applying average impulsive interval approach. By adopting proper variable transformation, the original system can be converted into first-order differential...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural processing letters 2019-12, Vol.50 (3), p.2053-2071
Hauptverfasser: Rakkiyappan, R., Gayathri, D., Velmurugan, G., Cao, Jinde
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2071
container_issue 3
container_start_page 2053
container_title Neural processing letters
container_volume 50
creator Rakkiyappan, R.
Gayathri, D.
Velmurugan, G.
Cao, Jinde
description This paper deals with the impulsive synchronization problem for a class of inertial memristor-based neural networks (IMNNs) with time delays by applying average impulsive interval approach. By adopting proper variable transformation, the original system can be converted into first-order differential equations. By utilizing Lyapunov theory, theory of differential inclusion, Halanay inequality and average impulsive interval approach, we attain some adequate conditions that make sure the exponential synchronization of IMNNs under the impulsive control technique. Moreover some delay-dependent conditions for delayed impulsive synchronization of the considered system is obtained. Finally, numerical simulations are offered to exhibit the capacity of our theoretical findings.
doi_str_mv 10.1007/s11063-019-09982-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918342620</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918342620</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-dcd4a90528c7bcd4e6a4299e7bcfb927cbbf09d22c45307cf3827cd946555ccb3</originalsourceid><addsrcrecordid>eNp9kLtOAzEQRVcIJMLjB6gsURv82EdchhAgEoSCRKKzvN7ZxJDYi71JWDr-HEOQ6Kjmzsw9M9JNkjNKLighxWWglOQcEyowEaLPcLeX9GhWcFwU_Hk_al4QnOaMHiZHIbwQEjFGesnn6L1xFmxr1BI9dVYvvLPmQ7XGWeRqNLbgf3YPsPImtM7jKxWgQhNY-zieQLt1_jWgrWkXaGpWgK5hqTo0C8bO0WADXs0BjVfNehnMJirbgt9EctA03im9OEkOarUMcPpbj5PZzWg6vMP3j7fj4eAea05FiytdpUqQjPV1UUYNuUqZEBCbuhSs0GVZE1ExptOMk0LXvB-HlUjzLMu0Lvlxcr67G9--rSG08sWtvY0vJRO0z1OWMxJdbOfS3oXgoZaNNyvlO0mJ_I5a7qKWMWr5E7XsIsR3UIhmOwf_d_of6guFW4VD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918342620</pqid></control><display><type>article</type><title>Exponential Synchronization of Inertial Memristor-Based Neural Networks with Time Delay Using Average Impulsive Interval Approach</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Rakkiyappan, R. ; Gayathri, D. ; Velmurugan, G. ; Cao, Jinde</creator><creatorcontrib>Rakkiyappan, R. ; Gayathri, D. ; Velmurugan, G. ; Cao, Jinde</creatorcontrib><description>This paper deals with the impulsive synchronization problem for a class of inertial memristor-based neural networks (IMNNs) with time delays by applying average impulsive interval approach. By adopting proper variable transformation, the original system can be converted into first-order differential equations. By utilizing Lyapunov theory, theory of differential inclusion, Halanay inequality and average impulsive interval approach, we attain some adequate conditions that make sure the exponential synchronization of IMNNs under the impulsive control technique. Moreover some delay-dependent conditions for delayed impulsive synchronization of the considered system is obtained. Finally, numerical simulations are offered to exhibit the capacity of our theoretical findings.</description><identifier>ISSN: 1370-4621</identifier><identifier>EISSN: 1573-773X</identifier><identifier>DOI: 10.1007/s11063-019-09982-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial Intelligence ; Complex Systems ; Computational Intelligence ; Computer Science ; Differential equations ; Investigations ; Memristors ; Neural networks ; Signal processing ; Synchronism ; Time lag</subject><ispartof>Neural processing letters, 2019-12, Vol.50 (3), p.2053-2071</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-dcd4a90528c7bcd4e6a4299e7bcfb927cbbf09d22c45307cf3827cd946555ccb3</citedby><cites>FETCH-LOGICAL-c319t-dcd4a90528c7bcd4e6a4299e7bcfb927cbbf09d22c45307cf3827cd946555ccb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11063-019-09982-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918342620?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21387,27923,27924,33743,41487,42556,43804,51318,64384,64388,72340</link.rule.ids></links><search><creatorcontrib>Rakkiyappan, R.</creatorcontrib><creatorcontrib>Gayathri, D.</creatorcontrib><creatorcontrib>Velmurugan, G.</creatorcontrib><creatorcontrib>Cao, Jinde</creatorcontrib><title>Exponential Synchronization of Inertial Memristor-Based Neural Networks with Time Delay Using Average Impulsive Interval Approach</title><title>Neural processing letters</title><addtitle>Neural Process Lett</addtitle><description>This paper deals with the impulsive synchronization problem for a class of inertial memristor-based neural networks (IMNNs) with time delays by applying average impulsive interval approach. By adopting proper variable transformation, the original system can be converted into first-order differential equations. By utilizing Lyapunov theory, theory of differential inclusion, Halanay inequality and average impulsive interval approach, we attain some adequate conditions that make sure the exponential synchronization of IMNNs under the impulsive control technique. Moreover some delay-dependent conditions for delayed impulsive synchronization of the considered system is obtained. Finally, numerical simulations are offered to exhibit the capacity of our theoretical findings.</description><subject>Artificial Intelligence</subject><subject>Complex Systems</subject><subject>Computational Intelligence</subject><subject>Computer Science</subject><subject>Differential equations</subject><subject>Investigations</subject><subject>Memristors</subject><subject>Neural networks</subject><subject>Signal processing</subject><subject>Synchronism</subject><subject>Time lag</subject><issn>1370-4621</issn><issn>1573-773X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kLtOAzEQRVcIJMLjB6gsURv82EdchhAgEoSCRKKzvN7ZxJDYi71JWDr-HEOQ6Kjmzsw9M9JNkjNKLighxWWglOQcEyowEaLPcLeX9GhWcFwU_Hk_al4QnOaMHiZHIbwQEjFGesnn6L1xFmxr1BI9dVYvvLPmQ7XGWeRqNLbgf3YPsPImtM7jKxWgQhNY-zieQLt1_jWgrWkXaGpWgK5hqTo0C8bO0WADXs0BjVfNehnMJirbgt9EctA03im9OEkOarUMcPpbj5PZzWg6vMP3j7fj4eAea05FiytdpUqQjPV1UUYNuUqZEBCbuhSs0GVZE1ExptOMk0LXvB-HlUjzLMu0Lvlxcr67G9--rSG08sWtvY0vJRO0z1OWMxJdbOfS3oXgoZaNNyvlO0mJ_I5a7qKWMWr5E7XsIsR3UIhmOwf_d_of6guFW4VD</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Rakkiyappan, R.</creator><creator>Gayathri, D.</creator><creator>Velmurugan, G.</creator><creator>Cao, Jinde</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope></search><sort><creationdate>20191201</creationdate><title>Exponential Synchronization of Inertial Memristor-Based Neural Networks with Time Delay Using Average Impulsive Interval Approach</title><author>Rakkiyappan, R. ; Gayathri, D. ; Velmurugan, G. ; Cao, Jinde</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-dcd4a90528c7bcd4e6a4299e7bcfb927cbbf09d22c45307cf3827cd946555ccb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial Intelligence</topic><topic>Complex Systems</topic><topic>Computational Intelligence</topic><topic>Computer Science</topic><topic>Differential equations</topic><topic>Investigations</topic><topic>Memristors</topic><topic>Neural networks</topic><topic>Signal processing</topic><topic>Synchronism</topic><topic>Time lag</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rakkiyappan, R.</creatorcontrib><creatorcontrib>Gayathri, D.</creatorcontrib><creatorcontrib>Velmurugan, G.</creatorcontrib><creatorcontrib>Cao, Jinde</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><jtitle>Neural processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rakkiyappan, R.</au><au>Gayathri, D.</au><au>Velmurugan, G.</au><au>Cao, Jinde</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exponential Synchronization of Inertial Memristor-Based Neural Networks with Time Delay Using Average Impulsive Interval Approach</atitle><jtitle>Neural processing letters</jtitle><stitle>Neural Process Lett</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>50</volume><issue>3</issue><spage>2053</spage><epage>2071</epage><pages>2053-2071</pages><issn>1370-4621</issn><eissn>1573-773X</eissn><abstract>This paper deals with the impulsive synchronization problem for a class of inertial memristor-based neural networks (IMNNs) with time delays by applying average impulsive interval approach. By adopting proper variable transformation, the original system can be converted into first-order differential equations. By utilizing Lyapunov theory, theory of differential inclusion, Halanay inequality and average impulsive interval approach, we attain some adequate conditions that make sure the exponential synchronization of IMNNs under the impulsive control technique. Moreover some delay-dependent conditions for delayed impulsive synchronization of the considered system is obtained. Finally, numerical simulations are offered to exhibit the capacity of our theoretical findings.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11063-019-09982-y</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1370-4621
ispartof Neural processing letters, 2019-12, Vol.50 (3), p.2053-2071
issn 1370-4621
1573-773X
language eng
recordid cdi_proquest_journals_2918342620
source ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Artificial Intelligence
Complex Systems
Computational Intelligence
Computer Science
Differential equations
Investigations
Memristors
Neural networks
Signal processing
Synchronism
Time lag
title Exponential Synchronization of Inertial Memristor-Based Neural Networks with Time Delay Using Average Impulsive Interval Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A42%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exponential%20Synchronization%20of%20Inertial%20Memristor-Based%20Neural%20Networks%20with%20Time%20Delay%20Using%20Average%20Impulsive%20Interval%20Approach&rft.jtitle=Neural%20processing%20letters&rft.au=Rakkiyappan,%20R.&rft.date=2019-12-01&rft.volume=50&rft.issue=3&rft.spage=2053&rft.epage=2071&rft.pages=2053-2071&rft.issn=1370-4621&rft.eissn=1573-773X&rft_id=info:doi/10.1007/s11063-019-09982-y&rft_dat=%3Cproquest_cross%3E2918342620%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918342620&rft_id=info:pmid/&rfr_iscdi=true