Exponential Synchronization of Inertial Memristor-Based Neural Networks with Time Delay Using Average Impulsive Interval Approach
This paper deals with the impulsive synchronization problem for a class of inertial memristor-based neural networks (IMNNs) with time delays by applying average impulsive interval approach. By adopting proper variable transformation, the original system can be converted into first-order differential...
Gespeichert in:
Veröffentlicht in: | Neural processing letters 2019-12, Vol.50 (3), p.2053-2071 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2071 |
---|---|
container_issue | 3 |
container_start_page | 2053 |
container_title | Neural processing letters |
container_volume | 50 |
creator | Rakkiyappan, R. Gayathri, D. Velmurugan, G. Cao, Jinde |
description | This paper deals with the impulsive synchronization problem for a class of inertial memristor-based neural networks (IMNNs) with time delays by applying average impulsive interval approach. By adopting proper variable transformation, the original system can be converted into first-order differential equations. By utilizing Lyapunov theory, theory of differential inclusion, Halanay inequality and average impulsive interval approach, we attain some adequate conditions that make sure the exponential synchronization of IMNNs under the impulsive control technique. Moreover some delay-dependent conditions for delayed impulsive synchronization of the considered system is obtained. Finally, numerical simulations are offered to exhibit the capacity of our theoretical findings. |
doi_str_mv | 10.1007/s11063-019-09982-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918342620</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918342620</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-dcd4a90528c7bcd4e6a4299e7bcfb927cbbf09d22c45307cf3827cd946555ccb3</originalsourceid><addsrcrecordid>eNp9kLtOAzEQRVcIJMLjB6gsURv82EdchhAgEoSCRKKzvN7ZxJDYi71JWDr-HEOQ6Kjmzsw9M9JNkjNKLighxWWglOQcEyowEaLPcLeX9GhWcFwU_Hk_al4QnOaMHiZHIbwQEjFGesnn6L1xFmxr1BI9dVYvvLPmQ7XGWeRqNLbgf3YPsPImtM7jKxWgQhNY-zieQLt1_jWgrWkXaGpWgK5hqTo0C8bO0WADXs0BjVfNehnMJirbgt9EctA03im9OEkOarUMcPpbj5PZzWg6vMP3j7fj4eAea05FiytdpUqQjPV1UUYNuUqZEBCbuhSs0GVZE1ExptOMk0LXvB-HlUjzLMu0Lvlxcr67G9--rSG08sWtvY0vJRO0z1OWMxJdbOfS3oXgoZaNNyvlO0mJ_I5a7qKWMWr5E7XsIsR3UIhmOwf_d_of6guFW4VD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918342620</pqid></control><display><type>article</type><title>Exponential Synchronization of Inertial Memristor-Based Neural Networks with Time Delay Using Average Impulsive Interval Approach</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Rakkiyappan, R. ; Gayathri, D. ; Velmurugan, G. ; Cao, Jinde</creator><creatorcontrib>Rakkiyappan, R. ; Gayathri, D. ; Velmurugan, G. ; Cao, Jinde</creatorcontrib><description>This paper deals with the impulsive synchronization problem for a class of inertial memristor-based neural networks (IMNNs) with time delays by applying average impulsive interval approach. By adopting proper variable transformation, the original system can be converted into first-order differential equations. By utilizing Lyapunov theory, theory of differential inclusion, Halanay inequality and average impulsive interval approach, we attain some adequate conditions that make sure the exponential synchronization of IMNNs under the impulsive control technique. Moreover some delay-dependent conditions for delayed impulsive synchronization of the considered system is obtained. Finally, numerical simulations are offered to exhibit the capacity of our theoretical findings.</description><identifier>ISSN: 1370-4621</identifier><identifier>EISSN: 1573-773X</identifier><identifier>DOI: 10.1007/s11063-019-09982-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial Intelligence ; Complex Systems ; Computational Intelligence ; Computer Science ; Differential equations ; Investigations ; Memristors ; Neural networks ; Signal processing ; Synchronism ; Time lag</subject><ispartof>Neural processing letters, 2019-12, Vol.50 (3), p.2053-2071</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-dcd4a90528c7bcd4e6a4299e7bcfb927cbbf09d22c45307cf3827cd946555ccb3</citedby><cites>FETCH-LOGICAL-c319t-dcd4a90528c7bcd4e6a4299e7bcfb927cbbf09d22c45307cf3827cd946555ccb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11063-019-09982-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918342620?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21387,27923,27924,33743,41487,42556,43804,51318,64384,64388,72340</link.rule.ids></links><search><creatorcontrib>Rakkiyappan, R.</creatorcontrib><creatorcontrib>Gayathri, D.</creatorcontrib><creatorcontrib>Velmurugan, G.</creatorcontrib><creatorcontrib>Cao, Jinde</creatorcontrib><title>Exponential Synchronization of Inertial Memristor-Based Neural Networks with Time Delay Using Average Impulsive Interval Approach</title><title>Neural processing letters</title><addtitle>Neural Process Lett</addtitle><description>This paper deals with the impulsive synchronization problem for a class of inertial memristor-based neural networks (IMNNs) with time delays by applying average impulsive interval approach. By adopting proper variable transformation, the original system can be converted into first-order differential equations. By utilizing Lyapunov theory, theory of differential inclusion, Halanay inequality and average impulsive interval approach, we attain some adequate conditions that make sure the exponential synchronization of IMNNs under the impulsive control technique. Moreover some delay-dependent conditions for delayed impulsive synchronization of the considered system is obtained. Finally, numerical simulations are offered to exhibit the capacity of our theoretical findings.</description><subject>Artificial Intelligence</subject><subject>Complex Systems</subject><subject>Computational Intelligence</subject><subject>Computer Science</subject><subject>Differential equations</subject><subject>Investigations</subject><subject>Memristors</subject><subject>Neural networks</subject><subject>Signal processing</subject><subject>Synchronism</subject><subject>Time lag</subject><issn>1370-4621</issn><issn>1573-773X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kLtOAzEQRVcIJMLjB6gsURv82EdchhAgEoSCRKKzvN7ZxJDYi71JWDr-HEOQ6Kjmzsw9M9JNkjNKLighxWWglOQcEyowEaLPcLeX9GhWcFwU_Hk_al4QnOaMHiZHIbwQEjFGesnn6L1xFmxr1BI9dVYvvLPmQ7XGWeRqNLbgf3YPsPImtM7jKxWgQhNY-zieQLt1_jWgrWkXaGpWgK5hqTo0C8bO0WADXs0BjVfNehnMJirbgt9EctA03im9OEkOarUMcPpbj5PZzWg6vMP3j7fj4eAea05FiytdpUqQjPV1UUYNuUqZEBCbuhSs0GVZE1ExptOMk0LXvB-HlUjzLMu0Lvlxcr67G9--rSG08sWtvY0vJRO0z1OWMxJdbOfS3oXgoZaNNyvlO0mJ_I5a7qKWMWr5E7XsIsR3UIhmOwf_d_of6guFW4VD</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Rakkiyappan, R.</creator><creator>Gayathri, D.</creator><creator>Velmurugan, G.</creator><creator>Cao, Jinde</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope></search><sort><creationdate>20191201</creationdate><title>Exponential Synchronization of Inertial Memristor-Based Neural Networks with Time Delay Using Average Impulsive Interval Approach</title><author>Rakkiyappan, R. ; Gayathri, D. ; Velmurugan, G. ; Cao, Jinde</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-dcd4a90528c7bcd4e6a4299e7bcfb927cbbf09d22c45307cf3827cd946555ccb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial Intelligence</topic><topic>Complex Systems</topic><topic>Computational Intelligence</topic><topic>Computer Science</topic><topic>Differential equations</topic><topic>Investigations</topic><topic>Memristors</topic><topic>Neural networks</topic><topic>Signal processing</topic><topic>Synchronism</topic><topic>Time lag</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rakkiyappan, R.</creatorcontrib><creatorcontrib>Gayathri, D.</creatorcontrib><creatorcontrib>Velmurugan, G.</creatorcontrib><creatorcontrib>Cao, Jinde</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><jtitle>Neural processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rakkiyappan, R.</au><au>Gayathri, D.</au><au>Velmurugan, G.</au><au>Cao, Jinde</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exponential Synchronization of Inertial Memristor-Based Neural Networks with Time Delay Using Average Impulsive Interval Approach</atitle><jtitle>Neural processing letters</jtitle><stitle>Neural Process Lett</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>50</volume><issue>3</issue><spage>2053</spage><epage>2071</epage><pages>2053-2071</pages><issn>1370-4621</issn><eissn>1573-773X</eissn><abstract>This paper deals with the impulsive synchronization problem for a class of inertial memristor-based neural networks (IMNNs) with time delays by applying average impulsive interval approach. By adopting proper variable transformation, the original system can be converted into first-order differential equations. By utilizing Lyapunov theory, theory of differential inclusion, Halanay inequality and average impulsive interval approach, we attain some adequate conditions that make sure the exponential synchronization of IMNNs under the impulsive control technique. Moreover some delay-dependent conditions for delayed impulsive synchronization of the considered system is obtained. Finally, numerical simulations are offered to exhibit the capacity of our theoretical findings.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11063-019-09982-y</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1370-4621 |
ispartof | Neural processing letters, 2019-12, Vol.50 (3), p.2053-2071 |
issn | 1370-4621 1573-773X |
language | eng |
recordid | cdi_proquest_journals_2918342620 |
source | ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Artificial Intelligence Complex Systems Computational Intelligence Computer Science Differential equations Investigations Memristors Neural networks Signal processing Synchronism Time lag |
title | Exponential Synchronization of Inertial Memristor-Based Neural Networks with Time Delay Using Average Impulsive Interval Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A42%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exponential%20Synchronization%20of%20Inertial%20Memristor-Based%20Neural%20Networks%20with%20Time%20Delay%20Using%20Average%20Impulsive%20Interval%20Approach&rft.jtitle=Neural%20processing%20letters&rft.au=Rakkiyappan,%20R.&rft.date=2019-12-01&rft.volume=50&rft.issue=3&rft.spage=2053&rft.epage=2071&rft.pages=2053-2071&rft.issn=1370-4621&rft.eissn=1573-773X&rft_id=info:doi/10.1007/s11063-019-09982-y&rft_dat=%3Cproquest_cross%3E2918342620%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918342620&rft_id=info:pmid/&rfr_iscdi=true |