Selecting the Color Space for Self-Organizing Map Based Foreground Detection in Video
Detecting foreground objects on scenes is a fundamental task in computer vision and the used color space is an important election for this task. In many situations, especially on dynamic backgrounds, neither grayscale nor RGB color spaces represent the best solution to detect foreground objects. Oth...
Gespeichert in:
Veröffentlicht in: | Neural processing letters 2016-04, Vol.43 (2), p.345-361 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 361 |
---|---|
container_issue | 2 |
container_start_page | 345 |
container_title | Neural processing letters |
container_volume | 43 |
creator | López-Rubio, Francisco J. Domínguez, Enrique Palomo, Esteban J. López-Rubio, Ezequiel Luque-Baena, Rafael M. |
description | Detecting foreground objects on scenes is a fundamental task in computer vision and the used color space is an important election for this task. In many situations, especially on dynamic backgrounds, neither grayscale nor RGB color spaces represent the best solution to detect foreground objects. Other standard color spaces, such as YCbCr or HSV, have been proposed for background modeling in the literature; although the best results have been achieved using diverse color spaces according to the application, scene, algorithm, etc. In this work, a color space and a color component weighting selection process are proposed to detect foreground objects in video sequences using self-organizing maps. Experimental results are also provided using well known benchmark videos. |
doi_str_mv | 10.1007/s11063-015-9431-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918339012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918339012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-a9b370cb6a098593f1228d40c13d2853b5b8503c1f7be261a1c565c96c8e286c3</originalsourceid><addsrcrecordid>eNp1kLFOwzAQhi0EEqXwAGyWmA0-u3acEQoFJFCHUsRmOY4TUoU42OkAT4-jIDEx3Q3_99_pQ-gc6CVQml1FACo5oSBIvuBA1AGagcg4yTL-dph2nlGykAyO0UmMO0oTxegMbTeudXZouhoP7w4vfesD3vTGOlyNm2srsg616ZrvMfNsenxjoivxygdXB7_vSnzrhrHCd7jp8GtTOn-KjirTRnf2O-dou7p7WT6Qp_X94_L6iVgOciAmL9JbtpCG5krkvALGVLmgFnjJlOCFKJSg3EKVFY5JMGCFFDaXVjmmpOVzdDH19sF_7l0c9M7vQ5dOapaD4jynwFIKppQNPsbgKt2H5sOELw1Uj_b0ZE8ne3q0p1Vi2MTElO1qF_6a_4d-AP0scJM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918339012</pqid></control><display><type>article</type><title>Selecting the Color Space for Self-Organizing Map Based Foreground Detection in Video</title><source>Springer Online Journals</source><source>ProQuest Central</source><creator>López-Rubio, Francisco J. ; Domínguez, Enrique ; Palomo, Esteban J. ; López-Rubio, Ezequiel ; Luque-Baena, Rafael M.</creator><creatorcontrib>López-Rubio, Francisco J. ; Domínguez, Enrique ; Palomo, Esteban J. ; López-Rubio, Ezequiel ; Luque-Baena, Rafael M.</creatorcontrib><description>Detecting foreground objects on scenes is a fundamental task in computer vision and the used color space is an important election for this task. In many situations, especially on dynamic backgrounds, neither grayscale nor RGB color spaces represent the best solution to detect foreground objects. Other standard color spaces, such as YCbCr or HSV, have been proposed for background modeling in the literature; although the best results have been achieved using diverse color spaces according to the application, scene, algorithm, etc. In this work, a color space and a color component weighting selection process are proposed to detect foreground objects in video sequences using self-organizing maps. Experimental results are also provided using well known benchmark videos.</description><identifier>ISSN: 1370-4621</identifier><identifier>EISSN: 1573-773X</identifier><identifier>DOI: 10.1007/s11063-015-9431-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Approximation ; Artificial Intelligence ; Color ; Complex Systems ; Computational Intelligence ; Computer Science ; Computer vision ; Distance learning ; Probability ; Random variables ; Self organizing maps ; Video compression ; Wavelet transforms</subject><ispartof>Neural processing letters, 2016-04, Vol.43 (2), p.345-361</ispartof><rights>Springer Science+Business Media New York 2015</rights><rights>Springer Science+Business Media New York 2015.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-a9b370cb6a098593f1228d40c13d2853b5b8503c1f7be261a1c565c96c8e286c3</citedby><cites>FETCH-LOGICAL-c316t-a9b370cb6a098593f1228d40c13d2853b5b8503c1f7be261a1c565c96c8e286c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11063-015-9431-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918339012?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21387,27923,27924,33743,41487,42556,43804,51318,64384,64388,72240</link.rule.ids></links><search><creatorcontrib>López-Rubio, Francisco J.</creatorcontrib><creatorcontrib>Domínguez, Enrique</creatorcontrib><creatorcontrib>Palomo, Esteban J.</creatorcontrib><creatorcontrib>López-Rubio, Ezequiel</creatorcontrib><creatorcontrib>Luque-Baena, Rafael M.</creatorcontrib><title>Selecting the Color Space for Self-Organizing Map Based Foreground Detection in Video</title><title>Neural processing letters</title><addtitle>Neural Process Lett</addtitle><description>Detecting foreground objects on scenes is a fundamental task in computer vision and the used color space is an important election for this task. In many situations, especially on dynamic backgrounds, neither grayscale nor RGB color spaces represent the best solution to detect foreground objects. Other standard color spaces, such as YCbCr or HSV, have been proposed for background modeling in the literature; although the best results have been achieved using diverse color spaces according to the application, scene, algorithm, etc. In this work, a color space and a color component weighting selection process are proposed to detect foreground objects in video sequences using self-organizing maps. Experimental results are also provided using well known benchmark videos.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Artificial Intelligence</subject><subject>Color</subject><subject>Complex Systems</subject><subject>Computational Intelligence</subject><subject>Computer Science</subject><subject>Computer vision</subject><subject>Distance learning</subject><subject>Probability</subject><subject>Random variables</subject><subject>Self organizing maps</subject><subject>Video compression</subject><subject>Wavelet transforms</subject><issn>1370-4621</issn><issn>1573-773X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kLFOwzAQhi0EEqXwAGyWmA0-u3acEQoFJFCHUsRmOY4TUoU42OkAT4-jIDEx3Q3_99_pQ-gc6CVQml1FACo5oSBIvuBA1AGagcg4yTL-dph2nlGykAyO0UmMO0oTxegMbTeudXZouhoP7w4vfesD3vTGOlyNm2srsg616ZrvMfNsenxjoivxygdXB7_vSnzrhrHCd7jp8GtTOn-KjirTRnf2O-dou7p7WT6Qp_X94_L6iVgOciAmL9JbtpCG5krkvALGVLmgFnjJlOCFKJSg3EKVFY5JMGCFFDaXVjmmpOVzdDH19sF_7l0c9M7vQ5dOapaD4jynwFIKppQNPsbgKt2H5sOELw1Uj_b0ZE8ne3q0p1Vi2MTElO1qF_6a_4d-AP0scJM</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>López-Rubio, Francisco J.</creator><creator>Domínguez, Enrique</creator><creator>Palomo, Esteban J.</creator><creator>López-Rubio, Ezequiel</creator><creator>Luque-Baena, Rafael M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope></search><sort><creationdate>20160401</creationdate><title>Selecting the Color Space for Self-Organizing Map Based Foreground Detection in Video</title><author>López-Rubio, Francisco J. ; Domínguez, Enrique ; Palomo, Esteban J. ; López-Rubio, Ezequiel ; Luque-Baena, Rafael M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-a9b370cb6a098593f1228d40c13d2853b5b8503c1f7be261a1c565c96c8e286c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Artificial Intelligence</topic><topic>Color</topic><topic>Complex Systems</topic><topic>Computational Intelligence</topic><topic>Computer Science</topic><topic>Computer vision</topic><topic>Distance learning</topic><topic>Probability</topic><topic>Random variables</topic><topic>Self organizing maps</topic><topic>Video compression</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>López-Rubio, Francisco J.</creatorcontrib><creatorcontrib>Domínguez, Enrique</creatorcontrib><creatorcontrib>Palomo, Esteban J.</creatorcontrib><creatorcontrib>López-Rubio, Ezequiel</creatorcontrib><creatorcontrib>Luque-Baena, Rafael M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><jtitle>Neural processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>López-Rubio, Francisco J.</au><au>Domínguez, Enrique</au><au>Palomo, Esteban J.</au><au>López-Rubio, Ezequiel</au><au>Luque-Baena, Rafael M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selecting the Color Space for Self-Organizing Map Based Foreground Detection in Video</atitle><jtitle>Neural processing letters</jtitle><stitle>Neural Process Lett</stitle><date>2016-04-01</date><risdate>2016</risdate><volume>43</volume><issue>2</issue><spage>345</spage><epage>361</epage><pages>345-361</pages><issn>1370-4621</issn><eissn>1573-773X</eissn><abstract>Detecting foreground objects on scenes is a fundamental task in computer vision and the used color space is an important election for this task. In many situations, especially on dynamic backgrounds, neither grayscale nor RGB color spaces represent the best solution to detect foreground objects. Other standard color spaces, such as YCbCr or HSV, have been proposed for background modeling in the literature; although the best results have been achieved using diverse color spaces according to the application, scene, algorithm, etc. In this work, a color space and a color component weighting selection process are proposed to detect foreground objects in video sequences using self-organizing maps. Experimental results are also provided using well known benchmark videos.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11063-015-9431-8</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1370-4621 |
ispartof | Neural processing letters, 2016-04, Vol.43 (2), p.345-361 |
issn | 1370-4621 1573-773X |
language | eng |
recordid | cdi_proquest_journals_2918339012 |
source | Springer Online Journals; ProQuest Central |
subjects | Algorithms Approximation Artificial Intelligence Color Complex Systems Computational Intelligence Computer Science Computer vision Distance learning Probability Random variables Self organizing maps Video compression Wavelet transforms |
title | Selecting the Color Space for Self-Organizing Map Based Foreground Detection in Video |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T16%3A58%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selecting%20the%20Color%20Space%20for%20Self-Organizing%20Map%20Based%20Foreground%20Detection%20in%20Video&rft.jtitle=Neural%20processing%20letters&rft.au=L%C3%B3pez-Rubio,%20Francisco%20J.&rft.date=2016-04-01&rft.volume=43&rft.issue=2&rft.spage=345&rft.epage=361&rft.pages=345-361&rft.issn=1370-4621&rft.eissn=1573-773X&rft_id=info:doi/10.1007/s11063-015-9431-8&rft_dat=%3Cproquest_cross%3E2918339012%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918339012&rft_id=info:pmid/&rfr_iscdi=true |