Selecting the Color Space for Self-Organizing Map Based Foreground Detection in Video

Detecting foreground objects on scenes is a fundamental task in computer vision and the used color space is an important election for this task. In many situations, especially on dynamic backgrounds, neither grayscale nor RGB color spaces represent the best solution to detect foreground objects. Oth...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural processing letters 2016-04, Vol.43 (2), p.345-361
Hauptverfasser: López-Rubio, Francisco J., Domínguez, Enrique, Palomo, Esteban J., López-Rubio, Ezequiel, Luque-Baena, Rafael M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 361
container_issue 2
container_start_page 345
container_title Neural processing letters
container_volume 43
creator López-Rubio, Francisco J.
Domínguez, Enrique
Palomo, Esteban J.
López-Rubio, Ezequiel
Luque-Baena, Rafael M.
description Detecting foreground objects on scenes is a fundamental task in computer vision and the used color space is an important election for this task. In many situations, especially on dynamic backgrounds, neither grayscale nor RGB color spaces represent the best solution to detect foreground objects. Other standard color spaces, such as YCbCr or HSV, have been proposed for background modeling in the literature; although the best results have been achieved using diverse color spaces according to the application, scene, algorithm, etc. In this work, a color space and a color component weighting selection process are proposed to detect foreground objects in video sequences using self-organizing maps. Experimental results are also provided using well known benchmark videos.
doi_str_mv 10.1007/s11063-015-9431-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918339012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918339012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-a9b370cb6a098593f1228d40c13d2853b5b8503c1f7be261a1c565c96c8e286c3</originalsourceid><addsrcrecordid>eNp1kLFOwzAQhi0EEqXwAGyWmA0-u3acEQoFJFCHUsRmOY4TUoU42OkAT4-jIDEx3Q3_99_pQ-gc6CVQml1FACo5oSBIvuBA1AGagcg4yTL-dph2nlGykAyO0UmMO0oTxegMbTeudXZouhoP7w4vfesD3vTGOlyNm2srsg616ZrvMfNsenxjoivxygdXB7_vSnzrhrHCd7jp8GtTOn-KjirTRnf2O-dou7p7WT6Qp_X94_L6iVgOciAmL9JbtpCG5krkvALGVLmgFnjJlOCFKJSg3EKVFY5JMGCFFDaXVjmmpOVzdDH19sF_7l0c9M7vQ5dOapaD4jynwFIKppQNPsbgKt2H5sOELw1Uj_b0ZE8ne3q0p1Vi2MTElO1qF_6a_4d-AP0scJM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918339012</pqid></control><display><type>article</type><title>Selecting the Color Space for Self-Organizing Map Based Foreground Detection in Video</title><source>Springer Online Journals</source><source>ProQuest Central</source><creator>López-Rubio, Francisco J. ; Domínguez, Enrique ; Palomo, Esteban J. ; López-Rubio, Ezequiel ; Luque-Baena, Rafael M.</creator><creatorcontrib>López-Rubio, Francisco J. ; Domínguez, Enrique ; Palomo, Esteban J. ; López-Rubio, Ezequiel ; Luque-Baena, Rafael M.</creatorcontrib><description>Detecting foreground objects on scenes is a fundamental task in computer vision and the used color space is an important election for this task. In many situations, especially on dynamic backgrounds, neither grayscale nor RGB color spaces represent the best solution to detect foreground objects. Other standard color spaces, such as YCbCr or HSV, have been proposed for background modeling in the literature; although the best results have been achieved using diverse color spaces according to the application, scene, algorithm, etc. In this work, a color space and a color component weighting selection process are proposed to detect foreground objects in video sequences using self-organizing maps. Experimental results are also provided using well known benchmark videos.</description><identifier>ISSN: 1370-4621</identifier><identifier>EISSN: 1573-773X</identifier><identifier>DOI: 10.1007/s11063-015-9431-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Approximation ; Artificial Intelligence ; Color ; Complex Systems ; Computational Intelligence ; Computer Science ; Computer vision ; Distance learning ; Probability ; Random variables ; Self organizing maps ; Video compression ; Wavelet transforms</subject><ispartof>Neural processing letters, 2016-04, Vol.43 (2), p.345-361</ispartof><rights>Springer Science+Business Media New York 2015</rights><rights>Springer Science+Business Media New York 2015.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-a9b370cb6a098593f1228d40c13d2853b5b8503c1f7be261a1c565c96c8e286c3</citedby><cites>FETCH-LOGICAL-c316t-a9b370cb6a098593f1228d40c13d2853b5b8503c1f7be261a1c565c96c8e286c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11063-015-9431-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918339012?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21387,27923,27924,33743,41487,42556,43804,51318,64384,64388,72240</link.rule.ids></links><search><creatorcontrib>López-Rubio, Francisco J.</creatorcontrib><creatorcontrib>Domínguez, Enrique</creatorcontrib><creatorcontrib>Palomo, Esteban J.</creatorcontrib><creatorcontrib>López-Rubio, Ezequiel</creatorcontrib><creatorcontrib>Luque-Baena, Rafael M.</creatorcontrib><title>Selecting the Color Space for Self-Organizing Map Based Foreground Detection in Video</title><title>Neural processing letters</title><addtitle>Neural Process Lett</addtitle><description>Detecting foreground objects on scenes is a fundamental task in computer vision and the used color space is an important election for this task. In many situations, especially on dynamic backgrounds, neither grayscale nor RGB color spaces represent the best solution to detect foreground objects. Other standard color spaces, such as YCbCr or HSV, have been proposed for background modeling in the literature; although the best results have been achieved using diverse color spaces according to the application, scene, algorithm, etc. In this work, a color space and a color component weighting selection process are proposed to detect foreground objects in video sequences using self-organizing maps. Experimental results are also provided using well known benchmark videos.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Artificial Intelligence</subject><subject>Color</subject><subject>Complex Systems</subject><subject>Computational Intelligence</subject><subject>Computer Science</subject><subject>Computer vision</subject><subject>Distance learning</subject><subject>Probability</subject><subject>Random variables</subject><subject>Self organizing maps</subject><subject>Video compression</subject><subject>Wavelet transforms</subject><issn>1370-4621</issn><issn>1573-773X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kLFOwzAQhi0EEqXwAGyWmA0-u3acEQoFJFCHUsRmOY4TUoU42OkAT4-jIDEx3Q3_99_pQ-gc6CVQml1FACo5oSBIvuBA1AGagcg4yTL-dph2nlGykAyO0UmMO0oTxegMbTeudXZouhoP7w4vfesD3vTGOlyNm2srsg616ZrvMfNsenxjoivxygdXB7_vSnzrhrHCd7jp8GtTOn-KjirTRnf2O-dou7p7WT6Qp_X94_L6iVgOciAmL9JbtpCG5krkvALGVLmgFnjJlOCFKJSg3EKVFY5JMGCFFDaXVjmmpOVzdDH19sF_7l0c9M7vQ5dOapaD4jynwFIKppQNPsbgKt2H5sOELw1Uj_b0ZE8ne3q0p1Vi2MTElO1qF_6a_4d-AP0scJM</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>López-Rubio, Francisco J.</creator><creator>Domínguez, Enrique</creator><creator>Palomo, Esteban J.</creator><creator>López-Rubio, Ezequiel</creator><creator>Luque-Baena, Rafael M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope></search><sort><creationdate>20160401</creationdate><title>Selecting the Color Space for Self-Organizing Map Based Foreground Detection in Video</title><author>López-Rubio, Francisco J. ; Domínguez, Enrique ; Palomo, Esteban J. ; López-Rubio, Ezequiel ; Luque-Baena, Rafael M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-a9b370cb6a098593f1228d40c13d2853b5b8503c1f7be261a1c565c96c8e286c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Artificial Intelligence</topic><topic>Color</topic><topic>Complex Systems</topic><topic>Computational Intelligence</topic><topic>Computer Science</topic><topic>Computer vision</topic><topic>Distance learning</topic><topic>Probability</topic><topic>Random variables</topic><topic>Self organizing maps</topic><topic>Video compression</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>López-Rubio, Francisco J.</creatorcontrib><creatorcontrib>Domínguez, Enrique</creatorcontrib><creatorcontrib>Palomo, Esteban J.</creatorcontrib><creatorcontrib>López-Rubio, Ezequiel</creatorcontrib><creatorcontrib>Luque-Baena, Rafael M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><jtitle>Neural processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>López-Rubio, Francisco J.</au><au>Domínguez, Enrique</au><au>Palomo, Esteban J.</au><au>López-Rubio, Ezequiel</au><au>Luque-Baena, Rafael M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selecting the Color Space for Self-Organizing Map Based Foreground Detection in Video</atitle><jtitle>Neural processing letters</jtitle><stitle>Neural Process Lett</stitle><date>2016-04-01</date><risdate>2016</risdate><volume>43</volume><issue>2</issue><spage>345</spage><epage>361</epage><pages>345-361</pages><issn>1370-4621</issn><eissn>1573-773X</eissn><abstract>Detecting foreground objects on scenes is a fundamental task in computer vision and the used color space is an important election for this task. In many situations, especially on dynamic backgrounds, neither grayscale nor RGB color spaces represent the best solution to detect foreground objects. Other standard color spaces, such as YCbCr or HSV, have been proposed for background modeling in the literature; although the best results have been achieved using diverse color spaces according to the application, scene, algorithm, etc. In this work, a color space and a color component weighting selection process are proposed to detect foreground objects in video sequences using self-organizing maps. Experimental results are also provided using well known benchmark videos.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11063-015-9431-8</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1370-4621
ispartof Neural processing letters, 2016-04, Vol.43 (2), p.345-361
issn 1370-4621
1573-773X
language eng
recordid cdi_proquest_journals_2918339012
source Springer Online Journals; ProQuest Central
subjects Algorithms
Approximation
Artificial Intelligence
Color
Complex Systems
Computational Intelligence
Computer Science
Computer vision
Distance learning
Probability
Random variables
Self organizing maps
Video compression
Wavelet transforms
title Selecting the Color Space for Self-Organizing Map Based Foreground Detection in Video
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T16%3A58%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selecting%20the%20Color%20Space%20for%20Self-Organizing%20Map%20Based%20Foreground%20Detection%20in%20Video&rft.jtitle=Neural%20processing%20letters&rft.au=L%C3%B3pez-Rubio,%20Francisco%20J.&rft.date=2016-04-01&rft.volume=43&rft.issue=2&rft.spage=345&rft.epage=361&rft.pages=345-361&rft.issn=1370-4621&rft.eissn=1573-773X&rft_id=info:doi/10.1007/s11063-015-9431-8&rft_dat=%3Cproquest_cross%3E2918339012%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918339012&rft_id=info:pmid/&rfr_iscdi=true