Performance Verification of a Fuzzy Wavelet Neural Network in the First Order Partial Derivative Approximation of Nonlinear Functions
Approximation of the first order partial derivative of a function modeled from a set of discrete data is the requirement of several applications. However, using a direct method for calculating the partial derivative from a set of discrete points is preferred rather differentiating the function which...
Gespeichert in:
Veröffentlicht in: | Neural processing letters 2016-02, Vol.43 (1), p.219-230 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 230 |
---|---|
container_issue | 1 |
container_start_page | 219 |
container_title | Neural processing letters |
container_volume | 43 |
creator | Nejad, Hadi Chahkandi Farshad, Mohsen Khayat, Omid Rahatabad, Fereidoun Nowshiravan |
description | Approximation of the first order partial derivative of a function modeled from a set of discrete data is the requirement of several applications. However, using a direct method for calculating the partial derivative from a set of discrete points is preferred rather differentiating the function which is obtained by modeling the discrete dataset. In this paper, the first order partial derivative of a fuzzy wavelet neural network structure is calculated to act as a direct differentiator. The structure of the network is described and its parameters are tuned by an adaptive gradient-based back propagation learning algorithm. It is shown that the proposed model outperforms the adaptive neuro-fuzzy inference-based and feed forward neural network-based differentiators in approximating the first order partial derivatives of multi-variable nonlinear functions. |
doi_str_mv | 10.1007/s11063-015-9414-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918338961</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918338961</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-aab315727c36d51ab3a4a02ba79afe133bc88fa5e97ca5fe88ad4bbe2888eb193</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRSMEEqXwAewssQ7YcR7OsioUkKqWBa-dNUknkJImZewU2j3_jaMgWLGaGeveM-PreaeCnwvOkwsjBI-lz0Xkp6EI_XTPG4gokX6SyOd918uE-2EciEPvyJgl584V8IH3dYdUNLSCOkf2iFQWZQ62bGrWFAzYpN3ttuwJNlihZTNsCSpX7EdDb6ysmX1FNinJWDanBRK7A7Klk1w60sZxNshG6zU1n-Xqlzpr6qqsEcjR67x7NcfeQQGVwZOfOvQeJlf34xt_Or--HY-mfi5FbH2ATLpPBUku40Uk3AQh8CCDJIUChZRZrlQBEaZJDlGBSsEizDIMlFKYiVQOvbOe6056b9FYvWxaqt1KHaRCSanSWDiV6FU5NcYQFnpN7n7aasF1l7bu09Yubd2lrTty0HuM09YvSH_k_03fnJmFVQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918338961</pqid></control><display><type>article</type><title>Performance Verification of a Fuzzy Wavelet Neural Network in the First Order Partial Derivative Approximation of Nonlinear Functions</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Nejad, Hadi Chahkandi ; Farshad, Mohsen ; Khayat, Omid ; Rahatabad, Fereidoun Nowshiravan</creator><creatorcontrib>Nejad, Hadi Chahkandi ; Farshad, Mohsen ; Khayat, Omid ; Rahatabad, Fereidoun Nowshiravan</creatorcontrib><description>Approximation of the first order partial derivative of a function modeled from a set of discrete data is the requirement of several applications. However, using a direct method for calculating the partial derivative from a set of discrete points is preferred rather differentiating the function which is obtained by modeling the discrete dataset. In this paper, the first order partial derivative of a fuzzy wavelet neural network structure is calculated to act as a direct differentiator. The structure of the network is described and its parameters are tuned by an adaptive gradient-based back propagation learning algorithm. It is shown that the proposed model outperforms the adaptive neuro-fuzzy inference-based and feed forward neural network-based differentiators in approximating the first order partial derivatives of multi-variable nonlinear functions.</description><identifier>ISSN: 1370-4621</identifier><identifier>EISSN: 1573-773X</identifier><identifier>DOI: 10.1007/s11063-015-9414-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Approximation ; Artificial Intelligence ; Artificial neural networks ; Back propagation ; Back propagation networks ; Bias ; Complex Systems ; Computational Intelligence ; Computer Science ; Derivatives ; Differentiators ; Fuzzy logic ; Machine learning ; Mathematical functions ; Neural networks ; Partial differential equations ; Time series</subject><ispartof>Neural processing letters, 2016-02, Vol.43 (1), p.219-230</ispartof><rights>Springer Science+Business Media New York 2015</rights><rights>Springer Science+Business Media New York 2015.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-aab315727c36d51ab3a4a02ba79afe133bc88fa5e97ca5fe88ad4bbe2888eb193</citedby><cites>FETCH-LOGICAL-c316t-aab315727c36d51ab3a4a02ba79afe133bc88fa5e97ca5fe88ad4bbe2888eb193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11063-015-9414-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918338961?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Nejad, Hadi Chahkandi</creatorcontrib><creatorcontrib>Farshad, Mohsen</creatorcontrib><creatorcontrib>Khayat, Omid</creatorcontrib><creatorcontrib>Rahatabad, Fereidoun Nowshiravan</creatorcontrib><title>Performance Verification of a Fuzzy Wavelet Neural Network in the First Order Partial Derivative Approximation of Nonlinear Functions</title><title>Neural processing letters</title><addtitle>Neural Process Lett</addtitle><description>Approximation of the first order partial derivative of a function modeled from a set of discrete data is the requirement of several applications. However, using a direct method for calculating the partial derivative from a set of discrete points is preferred rather differentiating the function which is obtained by modeling the discrete dataset. In this paper, the first order partial derivative of a fuzzy wavelet neural network structure is calculated to act as a direct differentiator. The structure of the network is described and its parameters are tuned by an adaptive gradient-based back propagation learning algorithm. It is shown that the proposed model outperforms the adaptive neuro-fuzzy inference-based and feed forward neural network-based differentiators in approximating the first order partial derivatives of multi-variable nonlinear functions.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Back propagation</subject><subject>Back propagation networks</subject><subject>Bias</subject><subject>Complex Systems</subject><subject>Computational Intelligence</subject><subject>Computer Science</subject><subject>Derivatives</subject><subject>Differentiators</subject><subject>Fuzzy logic</subject><subject>Machine learning</subject><subject>Mathematical functions</subject><subject>Neural networks</subject><subject>Partial differential equations</subject><subject>Time series</subject><issn>1370-4621</issn><issn>1573-773X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kMtOwzAQRSMEEqXwAewssQ7YcR7OsioUkKqWBa-dNUknkJImZewU2j3_jaMgWLGaGeveM-PreaeCnwvOkwsjBI-lz0Xkp6EI_XTPG4gokX6SyOd918uE-2EciEPvyJgl584V8IH3dYdUNLSCOkf2iFQWZQ62bGrWFAzYpN3ttuwJNlihZTNsCSpX7EdDb6ysmX1FNinJWDanBRK7A7Klk1w60sZxNshG6zU1n-Xqlzpr6qqsEcjR67x7NcfeQQGVwZOfOvQeJlf34xt_Or--HY-mfi5FbH2ATLpPBUku40Uk3AQh8CCDJIUChZRZrlQBEaZJDlGBSsEizDIMlFKYiVQOvbOe6056b9FYvWxaqt1KHaRCSanSWDiV6FU5NcYQFnpN7n7aasF1l7bu09Yubd2lrTty0HuM09YvSH_k_03fnJmFVQ</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Nejad, Hadi Chahkandi</creator><creator>Farshad, Mohsen</creator><creator>Khayat, Omid</creator><creator>Rahatabad, Fereidoun Nowshiravan</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope></search><sort><creationdate>20160201</creationdate><title>Performance Verification of a Fuzzy Wavelet Neural Network in the First Order Partial Derivative Approximation of Nonlinear Functions</title><author>Nejad, Hadi Chahkandi ; Farshad, Mohsen ; Khayat, Omid ; Rahatabad, Fereidoun Nowshiravan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-aab315727c36d51ab3a4a02ba79afe133bc88fa5e97ca5fe88ad4bbe2888eb193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Back propagation</topic><topic>Back propagation networks</topic><topic>Bias</topic><topic>Complex Systems</topic><topic>Computational Intelligence</topic><topic>Computer Science</topic><topic>Derivatives</topic><topic>Differentiators</topic><topic>Fuzzy logic</topic><topic>Machine learning</topic><topic>Mathematical functions</topic><topic>Neural networks</topic><topic>Partial differential equations</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nejad, Hadi Chahkandi</creatorcontrib><creatorcontrib>Farshad, Mohsen</creatorcontrib><creatorcontrib>Khayat, Omid</creatorcontrib><creatorcontrib>Rahatabad, Fereidoun Nowshiravan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><jtitle>Neural processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nejad, Hadi Chahkandi</au><au>Farshad, Mohsen</au><au>Khayat, Omid</au><au>Rahatabad, Fereidoun Nowshiravan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance Verification of a Fuzzy Wavelet Neural Network in the First Order Partial Derivative Approximation of Nonlinear Functions</atitle><jtitle>Neural processing letters</jtitle><stitle>Neural Process Lett</stitle><date>2016-02-01</date><risdate>2016</risdate><volume>43</volume><issue>1</issue><spage>219</spage><epage>230</epage><pages>219-230</pages><issn>1370-4621</issn><eissn>1573-773X</eissn><abstract>Approximation of the first order partial derivative of a function modeled from a set of discrete data is the requirement of several applications. However, using a direct method for calculating the partial derivative from a set of discrete points is preferred rather differentiating the function which is obtained by modeling the discrete dataset. In this paper, the first order partial derivative of a fuzzy wavelet neural network structure is calculated to act as a direct differentiator. The structure of the network is described and its parameters are tuned by an adaptive gradient-based back propagation learning algorithm. It is shown that the proposed model outperforms the adaptive neuro-fuzzy inference-based and feed forward neural network-based differentiators in approximating the first order partial derivatives of multi-variable nonlinear functions.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11063-015-9414-9</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1370-4621 |
ispartof | Neural processing letters, 2016-02, Vol.43 (1), p.219-230 |
issn | 1370-4621 1573-773X |
language | eng |
recordid | cdi_proquest_journals_2918338961 |
source | ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Algorithms Approximation Artificial Intelligence Artificial neural networks Back propagation Back propagation networks Bias Complex Systems Computational Intelligence Computer Science Derivatives Differentiators Fuzzy logic Machine learning Mathematical functions Neural networks Partial differential equations Time series |
title | Performance Verification of a Fuzzy Wavelet Neural Network in the First Order Partial Derivative Approximation of Nonlinear Functions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T10%3A25%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20Verification%20of%20a%20Fuzzy%20Wavelet%20Neural%20Network%20in%20the%20First%20Order%20Partial%20Derivative%20Approximation%20of%20Nonlinear%20Functions&rft.jtitle=Neural%20processing%20letters&rft.au=Nejad,%20Hadi%20Chahkandi&rft.date=2016-02-01&rft.volume=43&rft.issue=1&rft.spage=219&rft.epage=230&rft.pages=219-230&rft.issn=1370-4621&rft.eissn=1573-773X&rft_id=info:doi/10.1007/s11063-015-9414-9&rft_dat=%3Cproquest_cross%3E2918338961%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918338961&rft_id=info:pmid/&rfr_iscdi=true |