Performance Verification of a Fuzzy Wavelet Neural Network in the First Order Partial Derivative Approximation of Nonlinear Functions

Approximation of the first order partial derivative of a function modeled from a set of discrete data is the requirement of several applications. However, using a direct method for calculating the partial derivative from a set of discrete points is preferred rather differentiating the function which...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural processing letters 2016-02, Vol.43 (1), p.219-230
Hauptverfasser: Nejad, Hadi Chahkandi, Farshad, Mohsen, Khayat, Omid, Rahatabad, Fereidoun Nowshiravan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 230
container_issue 1
container_start_page 219
container_title Neural processing letters
container_volume 43
creator Nejad, Hadi Chahkandi
Farshad, Mohsen
Khayat, Omid
Rahatabad, Fereidoun Nowshiravan
description Approximation of the first order partial derivative of a function modeled from a set of discrete data is the requirement of several applications. However, using a direct method for calculating the partial derivative from a set of discrete points is preferred rather differentiating the function which is obtained by modeling the discrete dataset. In this paper, the first order partial derivative of a fuzzy wavelet neural network structure is calculated to act as a direct differentiator. The structure of the network is described and its parameters are tuned by an adaptive gradient-based back propagation learning algorithm. It is shown that the proposed model outperforms the adaptive neuro-fuzzy inference-based and feed forward neural network-based differentiators in approximating the first order partial derivatives of multi-variable nonlinear functions.
doi_str_mv 10.1007/s11063-015-9414-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918338961</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918338961</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-aab315727c36d51ab3a4a02ba79afe133bc88fa5e97ca5fe88ad4bbe2888eb193</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRSMEEqXwAewssQ7YcR7OsioUkKqWBa-dNUknkJImZewU2j3_jaMgWLGaGeveM-PreaeCnwvOkwsjBI-lz0Xkp6EI_XTPG4gokX6SyOd918uE-2EciEPvyJgl584V8IH3dYdUNLSCOkf2iFQWZQ62bGrWFAzYpN3ttuwJNlihZTNsCSpX7EdDb6ysmX1FNinJWDanBRK7A7Klk1w60sZxNshG6zU1n-Xqlzpr6qqsEcjR67x7NcfeQQGVwZOfOvQeJlf34xt_Or--HY-mfi5FbH2ATLpPBUku40Uk3AQh8CCDJIUChZRZrlQBEaZJDlGBSsEizDIMlFKYiVQOvbOe6056b9FYvWxaqt1KHaRCSanSWDiV6FU5NcYQFnpN7n7aasF1l7bu09Yubd2lrTty0HuM09YvSH_k_03fnJmFVQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918338961</pqid></control><display><type>article</type><title>Performance Verification of a Fuzzy Wavelet Neural Network in the First Order Partial Derivative Approximation of Nonlinear Functions</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Nejad, Hadi Chahkandi ; Farshad, Mohsen ; Khayat, Omid ; Rahatabad, Fereidoun Nowshiravan</creator><creatorcontrib>Nejad, Hadi Chahkandi ; Farshad, Mohsen ; Khayat, Omid ; Rahatabad, Fereidoun Nowshiravan</creatorcontrib><description>Approximation of the first order partial derivative of a function modeled from a set of discrete data is the requirement of several applications. However, using a direct method for calculating the partial derivative from a set of discrete points is preferred rather differentiating the function which is obtained by modeling the discrete dataset. In this paper, the first order partial derivative of a fuzzy wavelet neural network structure is calculated to act as a direct differentiator. The structure of the network is described and its parameters are tuned by an adaptive gradient-based back propagation learning algorithm. It is shown that the proposed model outperforms the adaptive neuro-fuzzy inference-based and feed forward neural network-based differentiators in approximating the first order partial derivatives of multi-variable nonlinear functions.</description><identifier>ISSN: 1370-4621</identifier><identifier>EISSN: 1573-773X</identifier><identifier>DOI: 10.1007/s11063-015-9414-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Approximation ; Artificial Intelligence ; Artificial neural networks ; Back propagation ; Back propagation networks ; Bias ; Complex Systems ; Computational Intelligence ; Computer Science ; Derivatives ; Differentiators ; Fuzzy logic ; Machine learning ; Mathematical functions ; Neural networks ; Partial differential equations ; Time series</subject><ispartof>Neural processing letters, 2016-02, Vol.43 (1), p.219-230</ispartof><rights>Springer Science+Business Media New York 2015</rights><rights>Springer Science+Business Media New York 2015.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-aab315727c36d51ab3a4a02ba79afe133bc88fa5e97ca5fe88ad4bbe2888eb193</citedby><cites>FETCH-LOGICAL-c316t-aab315727c36d51ab3a4a02ba79afe133bc88fa5e97ca5fe88ad4bbe2888eb193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11063-015-9414-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918338961?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Nejad, Hadi Chahkandi</creatorcontrib><creatorcontrib>Farshad, Mohsen</creatorcontrib><creatorcontrib>Khayat, Omid</creatorcontrib><creatorcontrib>Rahatabad, Fereidoun Nowshiravan</creatorcontrib><title>Performance Verification of a Fuzzy Wavelet Neural Network in the First Order Partial Derivative Approximation of Nonlinear Functions</title><title>Neural processing letters</title><addtitle>Neural Process Lett</addtitle><description>Approximation of the first order partial derivative of a function modeled from a set of discrete data is the requirement of several applications. However, using a direct method for calculating the partial derivative from a set of discrete points is preferred rather differentiating the function which is obtained by modeling the discrete dataset. In this paper, the first order partial derivative of a fuzzy wavelet neural network structure is calculated to act as a direct differentiator. The structure of the network is described and its parameters are tuned by an adaptive gradient-based back propagation learning algorithm. It is shown that the proposed model outperforms the adaptive neuro-fuzzy inference-based and feed forward neural network-based differentiators in approximating the first order partial derivatives of multi-variable nonlinear functions.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Back propagation</subject><subject>Back propagation networks</subject><subject>Bias</subject><subject>Complex Systems</subject><subject>Computational Intelligence</subject><subject>Computer Science</subject><subject>Derivatives</subject><subject>Differentiators</subject><subject>Fuzzy logic</subject><subject>Machine learning</subject><subject>Mathematical functions</subject><subject>Neural networks</subject><subject>Partial differential equations</subject><subject>Time series</subject><issn>1370-4621</issn><issn>1573-773X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kMtOwzAQRSMEEqXwAewssQ7YcR7OsioUkKqWBa-dNUknkJImZewU2j3_jaMgWLGaGeveM-PreaeCnwvOkwsjBI-lz0Xkp6EI_XTPG4gokX6SyOd918uE-2EciEPvyJgl584V8IH3dYdUNLSCOkf2iFQWZQ62bGrWFAzYpN3ttuwJNlihZTNsCSpX7EdDb6ysmX1FNinJWDanBRK7A7Klk1w60sZxNshG6zU1n-Xqlzpr6qqsEcjR67x7NcfeQQGVwZOfOvQeJlf34xt_Or--HY-mfi5FbH2ATLpPBUku40Uk3AQh8CCDJIUChZRZrlQBEaZJDlGBSsEizDIMlFKYiVQOvbOe6056b9FYvWxaqt1KHaRCSanSWDiV6FU5NcYQFnpN7n7aasF1l7bu09Yubd2lrTty0HuM09YvSH_k_03fnJmFVQ</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Nejad, Hadi Chahkandi</creator><creator>Farshad, Mohsen</creator><creator>Khayat, Omid</creator><creator>Rahatabad, Fereidoun Nowshiravan</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope></search><sort><creationdate>20160201</creationdate><title>Performance Verification of a Fuzzy Wavelet Neural Network in the First Order Partial Derivative Approximation of Nonlinear Functions</title><author>Nejad, Hadi Chahkandi ; Farshad, Mohsen ; Khayat, Omid ; Rahatabad, Fereidoun Nowshiravan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-aab315727c36d51ab3a4a02ba79afe133bc88fa5e97ca5fe88ad4bbe2888eb193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Back propagation</topic><topic>Back propagation networks</topic><topic>Bias</topic><topic>Complex Systems</topic><topic>Computational Intelligence</topic><topic>Computer Science</topic><topic>Derivatives</topic><topic>Differentiators</topic><topic>Fuzzy logic</topic><topic>Machine learning</topic><topic>Mathematical functions</topic><topic>Neural networks</topic><topic>Partial differential equations</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nejad, Hadi Chahkandi</creatorcontrib><creatorcontrib>Farshad, Mohsen</creatorcontrib><creatorcontrib>Khayat, Omid</creatorcontrib><creatorcontrib>Rahatabad, Fereidoun Nowshiravan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><jtitle>Neural processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nejad, Hadi Chahkandi</au><au>Farshad, Mohsen</au><au>Khayat, Omid</au><au>Rahatabad, Fereidoun Nowshiravan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance Verification of a Fuzzy Wavelet Neural Network in the First Order Partial Derivative Approximation of Nonlinear Functions</atitle><jtitle>Neural processing letters</jtitle><stitle>Neural Process Lett</stitle><date>2016-02-01</date><risdate>2016</risdate><volume>43</volume><issue>1</issue><spage>219</spage><epage>230</epage><pages>219-230</pages><issn>1370-4621</issn><eissn>1573-773X</eissn><abstract>Approximation of the first order partial derivative of a function modeled from a set of discrete data is the requirement of several applications. However, using a direct method for calculating the partial derivative from a set of discrete points is preferred rather differentiating the function which is obtained by modeling the discrete dataset. In this paper, the first order partial derivative of a fuzzy wavelet neural network structure is calculated to act as a direct differentiator. The structure of the network is described and its parameters are tuned by an adaptive gradient-based back propagation learning algorithm. It is shown that the proposed model outperforms the adaptive neuro-fuzzy inference-based and feed forward neural network-based differentiators in approximating the first order partial derivatives of multi-variable nonlinear functions.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11063-015-9414-9</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1370-4621
ispartof Neural processing letters, 2016-02, Vol.43 (1), p.219-230
issn 1370-4621
1573-773X
language eng
recordid cdi_proquest_journals_2918338961
source ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Algorithms
Approximation
Artificial Intelligence
Artificial neural networks
Back propagation
Back propagation networks
Bias
Complex Systems
Computational Intelligence
Computer Science
Derivatives
Differentiators
Fuzzy logic
Machine learning
Mathematical functions
Neural networks
Partial differential equations
Time series
title Performance Verification of a Fuzzy Wavelet Neural Network in the First Order Partial Derivative Approximation of Nonlinear Functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T10%3A25%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20Verification%20of%20a%20Fuzzy%20Wavelet%20Neural%20Network%20in%20the%20First%20Order%20Partial%20Derivative%20Approximation%20of%20Nonlinear%20Functions&rft.jtitle=Neural%20processing%20letters&rft.au=Nejad,%20Hadi%20Chahkandi&rft.date=2016-02-01&rft.volume=43&rft.issue=1&rft.spage=219&rft.epage=230&rft.pages=219-230&rft.issn=1370-4621&rft.eissn=1573-773X&rft_id=info:doi/10.1007/s11063-015-9414-9&rft_dat=%3Cproquest_cross%3E2918338961%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918338961&rft_id=info:pmid/&rfr_iscdi=true