Capturing Temporal Structures for Video Captioning by Spatio-temporal Contexts and Channel Attention Mechanism
To generate a natural language description for videos, there has been tremendous interest in developing deep neural networks with the integration of temporal structures in different categories. Considering the spatial and temporal domains inherent in video frames, we contend that the video dynamics...
Gespeichert in:
Veröffentlicht in: | Neural processing letters 2017-08, Vol.46 (1), p.313-328 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 328 |
---|---|
container_issue | 1 |
container_start_page | 313 |
container_title | Neural processing letters |
container_volume | 46 |
creator | Guo, Dashan Li, Wei Fang, Xiangzhong |
description | To generate a natural language description for videos, there has been tremendous interest in developing deep neural networks with the integration of temporal structures in different categories. Considering the spatial and temporal domains inherent in video frames, we contend that the video dynamics and the spatio-temporal contexts are both important for captioning, which correspond to two different temporal structures. However, while the video dynamics is well investigated, the spatio-temporal contexts have not been given sufficient attention. In this paper, we take both structures into account and propose a novel recurrent convolution model for captioning. Firstly, for a comprehensive and detailed representation, we propose to aggregate the local and global spatio-temporal contexts in the recurrent convolution networks. Secondly, to capture much subtler temporal dynamics, the channel attention mechanism is introduced and it helps to understand the involvement of the frame feature maps with the captioning process. Finally, a qualitative comparison with several variants of our model demonstrates the effectiveness of incorporating these two structures. Moreover, experiments on YouTube2Text dataset have shown that the proposed method achieves competitive performance to other state-of-the-art methods. |
doi_str_mv | 10.1007/s11063-017-9591-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918338631</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918338631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-f437a06e6af6bba4690e0e6763815d2d67706c2b8aa79ff341c6d55e1f4542fa3</originalsourceid><addsrcrecordid>eNp1kMtKxDAUhoMoOI4-gLuA62hO0ybtcijeYMTFjOIupG2iHWaSmmTAeXtTqrhydS783znwIXQJ9BooFTcBgHJGKAhSFRWQ6gjNoBCMCMHejlPPBCU5z-AUnYWwoTRRGZ0hW6sh7n1v3_Fa7wbn1Ravot-3aakDNs7j177TDo-53tkx2BzwalBpIvEXqZ2N-isGrGyH6w9lrd7iRYzajhB-0m3a9WF3jk6M2gZ98VPn6OXudl0_kOXz_WO9WJKWAY_E5EwoyjVXhjeNynlFNdVccFZC0WUdF4LyNmtKpURlDMuh5V1RaDB5kWdGsTm6mu4O3n3udYhy4_beppcyq6BkrOQMUgqmVOtdCF4bOfh-p_xBApWjVjlplUmrHLXKKjHZxIRhtKb93-X_oW_w_HwQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918338631</pqid></control><display><type>article</type><title>Capturing Temporal Structures for Video Captioning by Spatio-temporal Contexts and Channel Attention Mechanism</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Guo, Dashan ; Li, Wei ; Fang, Xiangzhong</creator><creatorcontrib>Guo, Dashan ; Li, Wei ; Fang, Xiangzhong</creatorcontrib><description>To generate a natural language description for videos, there has been tremendous interest in developing deep neural networks with the integration of temporal structures in different categories. Considering the spatial and temporal domains inherent in video frames, we contend that the video dynamics and the spatio-temporal contexts are both important for captioning, which correspond to two different temporal structures. However, while the video dynamics is well investigated, the spatio-temporal contexts have not been given sufficient attention. In this paper, we take both structures into account and propose a novel recurrent convolution model for captioning. Firstly, for a comprehensive and detailed representation, we propose to aggregate the local and global spatio-temporal contexts in the recurrent convolution networks. Secondly, to capture much subtler temporal dynamics, the channel attention mechanism is introduced and it helps to understand the involvement of the frame feature maps with the captioning process. Finally, a qualitative comparison with several variants of our model demonstrates the effectiveness of incorporating these two structures. Moreover, experiments on YouTube2Text dataset have shown that the proposed method achieves competitive performance to other state-of-the-art methods.</description><identifier>ISSN: 1370-4621</identifier><identifier>EISSN: 1573-773X</identifier><identifier>DOI: 10.1007/s11063-017-9591-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial Intelligence ; Artificial neural networks ; Back propagation ; Classification ; Complex Systems ; Computational Intelligence ; Computer Science ; Convolution ; Deep learning ; Dynamic structural analysis ; Feature maps ; Investigations ; Neural networks ; Semantics</subject><ispartof>Neural processing letters, 2017-08, Vol.46 (1), p.313-328</ispartof><rights>Springer Science+Business Media New York 2017</rights><rights>Springer Science+Business Media New York 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-f437a06e6af6bba4690e0e6763815d2d67706c2b8aa79ff341c6d55e1f4542fa3</citedby><cites>FETCH-LOGICAL-c316t-f437a06e6af6bba4690e0e6763815d2d67706c2b8aa79ff341c6d55e1f4542fa3</cites><orcidid>0000-0001-6833-8882</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11063-017-9591-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918338631?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,777,781,21369,27905,27906,33725,41469,42538,43786,51300,64364,64368,72218</link.rule.ids></links><search><creatorcontrib>Guo, Dashan</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Fang, Xiangzhong</creatorcontrib><title>Capturing Temporal Structures for Video Captioning by Spatio-temporal Contexts and Channel Attention Mechanism</title><title>Neural processing letters</title><addtitle>Neural Process Lett</addtitle><description>To generate a natural language description for videos, there has been tremendous interest in developing deep neural networks with the integration of temporal structures in different categories. Considering the spatial and temporal domains inherent in video frames, we contend that the video dynamics and the spatio-temporal contexts are both important for captioning, which correspond to two different temporal structures. However, while the video dynamics is well investigated, the spatio-temporal contexts have not been given sufficient attention. In this paper, we take both structures into account and propose a novel recurrent convolution model for captioning. Firstly, for a comprehensive and detailed representation, we propose to aggregate the local and global spatio-temporal contexts in the recurrent convolution networks. Secondly, to capture much subtler temporal dynamics, the channel attention mechanism is introduced and it helps to understand the involvement of the frame feature maps with the captioning process. Finally, a qualitative comparison with several variants of our model demonstrates the effectiveness of incorporating these two structures. Moreover, experiments on YouTube2Text dataset have shown that the proposed method achieves competitive performance to other state-of-the-art methods.</description><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Back propagation</subject><subject>Classification</subject><subject>Complex Systems</subject><subject>Computational Intelligence</subject><subject>Computer Science</subject><subject>Convolution</subject><subject>Deep learning</subject><subject>Dynamic structural analysis</subject><subject>Feature maps</subject><subject>Investigations</subject><subject>Neural networks</subject><subject>Semantics</subject><issn>1370-4621</issn><issn>1573-773X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kMtKxDAUhoMoOI4-gLuA62hO0ybtcijeYMTFjOIupG2iHWaSmmTAeXtTqrhydS783znwIXQJ9BooFTcBgHJGKAhSFRWQ6gjNoBCMCMHejlPPBCU5z-AUnYWwoTRRGZ0hW6sh7n1v3_Fa7wbn1Ravot-3aakDNs7j177TDo-53tkx2BzwalBpIvEXqZ2N-isGrGyH6w9lrd7iRYzajhB-0m3a9WF3jk6M2gZ98VPn6OXudl0_kOXz_WO9WJKWAY_E5EwoyjVXhjeNynlFNdVccFZC0WUdF4LyNmtKpURlDMuh5V1RaDB5kWdGsTm6mu4O3n3udYhy4_beppcyq6BkrOQMUgqmVOtdCF4bOfh-p_xBApWjVjlplUmrHLXKKjHZxIRhtKb93-X_oW_w_HwQ</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Guo, Dashan</creator><creator>Li, Wei</creator><creator>Fang, Xiangzhong</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><orcidid>https://orcid.org/0000-0001-6833-8882</orcidid></search><sort><creationdate>20170801</creationdate><title>Capturing Temporal Structures for Video Captioning by Spatio-temporal Contexts and Channel Attention Mechanism</title><author>Guo, Dashan ; Li, Wei ; Fang, Xiangzhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-f437a06e6af6bba4690e0e6763815d2d67706c2b8aa79ff341c6d55e1f4542fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Back propagation</topic><topic>Classification</topic><topic>Complex Systems</topic><topic>Computational Intelligence</topic><topic>Computer Science</topic><topic>Convolution</topic><topic>Deep learning</topic><topic>Dynamic structural analysis</topic><topic>Feature maps</topic><topic>Investigations</topic><topic>Neural networks</topic><topic>Semantics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Dashan</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Fang, Xiangzhong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><jtitle>Neural processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Dashan</au><au>Li, Wei</au><au>Fang, Xiangzhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Capturing Temporal Structures for Video Captioning by Spatio-temporal Contexts and Channel Attention Mechanism</atitle><jtitle>Neural processing letters</jtitle><stitle>Neural Process Lett</stitle><date>2017-08-01</date><risdate>2017</risdate><volume>46</volume><issue>1</issue><spage>313</spage><epage>328</epage><pages>313-328</pages><issn>1370-4621</issn><eissn>1573-773X</eissn><abstract>To generate a natural language description for videos, there has been tremendous interest in developing deep neural networks with the integration of temporal structures in different categories. Considering the spatial and temporal domains inherent in video frames, we contend that the video dynamics and the spatio-temporal contexts are both important for captioning, which correspond to two different temporal structures. However, while the video dynamics is well investigated, the spatio-temporal contexts have not been given sufficient attention. In this paper, we take both structures into account and propose a novel recurrent convolution model for captioning. Firstly, for a comprehensive and detailed representation, we propose to aggregate the local and global spatio-temporal contexts in the recurrent convolution networks. Secondly, to capture much subtler temporal dynamics, the channel attention mechanism is introduced and it helps to understand the involvement of the frame feature maps with the captioning process. Finally, a qualitative comparison with several variants of our model demonstrates the effectiveness of incorporating these two structures. Moreover, experiments on YouTube2Text dataset have shown that the proposed method achieves competitive performance to other state-of-the-art methods.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11063-017-9591-9</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-6833-8882</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1370-4621 |
ispartof | Neural processing letters, 2017-08, Vol.46 (1), p.313-328 |
issn | 1370-4621 1573-773X |
language | eng |
recordid | cdi_proquest_journals_2918338631 |
source | Springer Nature - Complete Springer Journals; ProQuest Central UK/Ireland; ProQuest Central |
subjects | Artificial Intelligence Artificial neural networks Back propagation Classification Complex Systems Computational Intelligence Computer Science Convolution Deep learning Dynamic structural analysis Feature maps Investigations Neural networks Semantics |
title | Capturing Temporal Structures for Video Captioning by Spatio-temporal Contexts and Channel Attention Mechanism |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T02%3A39%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Capturing%20Temporal%20Structures%20for%20Video%20Captioning%20by%20Spatio-temporal%20Contexts%20and%20Channel%20Attention%20Mechanism&rft.jtitle=Neural%20processing%20letters&rft.au=Guo,%20Dashan&rft.date=2017-08-01&rft.volume=46&rft.issue=1&rft.spage=313&rft.epage=328&rft.pages=313-328&rft.issn=1370-4621&rft.eissn=1573-773X&rft_id=info:doi/10.1007/s11063-017-9591-9&rft_dat=%3Cproquest_cross%3E2918338631%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918338631&rft_id=info:pmid/&rfr_iscdi=true |