Rough neural network of variable precision
In this paper, a new method is described to construct rough neural networks. On the base of rough set model, we present a method to develop rough neural network of variable precision and train it using Levenberg–Marquart algorithm. The method is particularly attractive because it combines the advant...
Gespeichert in:
Veröffentlicht in: | Neural processing letters 2004-02, Vol.19 (1), p.73-87 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 87 |
---|---|
container_issue | 1 |
container_start_page | 73 |
container_title | Neural processing letters |
container_volume | 19 |
creator | Liu, Hongjian Tuo, Hongya Liu, Yuncai |
description | In this paper, a new method is described to construct rough neural networks. On the base of rough set model, we present a method to develop rough neural network of variable precision and train it using Levenberg–Marquart algorithm. The method is particularly attractive because it combines the advantages of both rough logic networks and neural networks. In our system, weak generalization in rough sets theory and complexity in neural network are avoided while anti-jamming performance is highly improved and the network structure is also simplified. In experiments, the network is applied to classification of remote sensing images. The results show that our method is more effective and successful than application of rough sets and neural network separately. |
doi_str_mv | 10.1023/B:NEPL.0000016851.47914.40 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918338450</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918338450</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-776c7ac42a5157bada204feb89c9dc52806229da611657f5cde5a97a93e131953</originalsourceid><addsrcrecordid>eNpFUMtOwzAQtBBIlMI_RCAuSAl-xnFvtCoPqQKEQOJmbR0HUkIc7AbE3-PQSt3L7GF2ZnYQOiU4I5iyy-nkfv64yPAwJC8EybhUhGcc76EREZKlUrLX_bgziVOeU3KIjkJYRTbGFI_QxZPr396T1vYemgjrH-c_Elcl3-BrWDY26bw1dahde4wOKmiCPdniGL1cz59nt-ni4eZudrVIDSNqHQ1zI8FwCiIGWEIJFPPKLgtlVGkELXBOqSohJyQXshKmtAKUBMUsiQKCjdHZRrfz7qu3Ya1XrvdttNRUkYKxggscWZMNy3gXgreV7nz9Cf5XE6yHbvRUD93oXTf6vxvNh-PzrQUEA03loY0_7hSEiJkFZX9jqGNr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918338450</pqid></control><display><type>article</type><title>Rough neural network of variable precision</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Liu, Hongjian ; Tuo, Hongya ; Liu, Yuncai</creator><creatorcontrib>Liu, Hongjian ; Tuo, Hongya ; Liu, Yuncai</creatorcontrib><description>In this paper, a new method is described to construct rough neural networks. On the base of rough set model, we present a method to develop rough neural network of variable precision and train it using Levenberg–Marquart algorithm. The method is particularly attractive because it combines the advantages of both rough logic networks and neural networks. In our system, weak generalization in rough sets theory and complexity in neural network are avoided while anti-jamming performance is highly improved and the network structure is also simplified. In experiments, the network is applied to classification of remote sensing images. The results show that our method is more effective and successful than application of rough sets and neural network separately.</description><identifier>ISSN: 1370-4621</identifier><identifier>EISSN: 1573-773X</identifier><identifier>DOI: 10.1023/B:NEPL.0000016851.47914.40</identifier><language>eng</language><publisher>Dordrecht: Springer</publisher><subject>Algorithms ; Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Connectionism. Neural networks ; Exact sciences and technology ; Jamming performance ; Neural networks ; Remote sensing ; Rough set models</subject><ispartof>Neural processing letters, 2004-02, Vol.19 (1), p.73-87</ispartof><rights>2004 INIST-CNRS</rights><rights>Kluwer Academic Publishers 2004.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-776c7ac42a5157bada204feb89c9dc52806229da611657f5cde5a97a93e131953</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2918338450?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21387,27923,27924,33743,43804,64384,64388,72240</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15520452$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Hongjian</creatorcontrib><creatorcontrib>Tuo, Hongya</creatorcontrib><creatorcontrib>Liu, Yuncai</creatorcontrib><title>Rough neural network of variable precision</title><title>Neural processing letters</title><description>In this paper, a new method is described to construct rough neural networks. On the base of rough set model, we present a method to develop rough neural network of variable precision and train it using Levenberg–Marquart algorithm. The method is particularly attractive because it combines the advantages of both rough logic networks and neural networks. In our system, weak generalization in rough sets theory and complexity in neural network are avoided while anti-jamming performance is highly improved and the network structure is also simplified. In experiments, the network is applied to classification of remote sensing images. The results show that our method is more effective and successful than application of rough sets and neural network separately.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Connectionism. Neural networks</subject><subject>Exact sciences and technology</subject><subject>Jamming performance</subject><subject>Neural networks</subject><subject>Remote sensing</subject><subject>Rough set models</subject><issn>1370-4621</issn><issn>1573-773X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpFUMtOwzAQtBBIlMI_RCAuSAl-xnFvtCoPqQKEQOJmbR0HUkIc7AbE3-PQSt3L7GF2ZnYQOiU4I5iyy-nkfv64yPAwJC8EybhUhGcc76EREZKlUrLX_bgziVOeU3KIjkJYRTbGFI_QxZPr396T1vYemgjrH-c_Elcl3-BrWDY26bw1dahde4wOKmiCPdniGL1cz59nt-ni4eZudrVIDSNqHQ1zI8FwCiIGWEIJFPPKLgtlVGkELXBOqSohJyQXshKmtAKUBMUsiQKCjdHZRrfz7qu3Ya1XrvdttNRUkYKxggscWZMNy3gXgreV7nz9Cf5XE6yHbvRUD93oXTf6vxvNh-PzrQUEA03loY0_7hSEiJkFZX9jqGNr</recordid><startdate>20040201</startdate><enddate>20040201</enddate><creator>Liu, Hongjian</creator><creator>Tuo, Hongya</creator><creator>Liu, Yuncai</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope></search><sort><creationdate>20040201</creationdate><title>Rough neural network of variable precision</title><author>Liu, Hongjian ; Tuo, Hongya ; Liu, Yuncai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-776c7ac42a5157bada204feb89c9dc52806229da611657f5cde5a97a93e131953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Connectionism. Neural networks</topic><topic>Exact sciences and technology</topic><topic>Jamming performance</topic><topic>Neural networks</topic><topic>Remote sensing</topic><topic>Rough set models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Hongjian</creatorcontrib><creatorcontrib>Tuo, Hongya</creatorcontrib><creatorcontrib>Liu, Yuncai</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><jtitle>Neural processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Hongjian</au><au>Tuo, Hongya</au><au>Liu, Yuncai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rough neural network of variable precision</atitle><jtitle>Neural processing letters</jtitle><date>2004-02-01</date><risdate>2004</risdate><volume>19</volume><issue>1</issue><spage>73</spage><epage>87</epage><pages>73-87</pages><issn>1370-4621</issn><eissn>1573-773X</eissn><abstract>In this paper, a new method is described to construct rough neural networks. On the base of rough set model, we present a method to develop rough neural network of variable precision and train it using Levenberg–Marquart algorithm. The method is particularly attractive because it combines the advantages of both rough logic networks and neural networks. In our system, weak generalization in rough sets theory and complexity in neural network are avoided while anti-jamming performance is highly improved and the network structure is also simplified. In experiments, the network is applied to classification of remote sensing images. The results show that our method is more effective and successful than application of rough sets and neural network separately.</abstract><cop>Dordrecht</cop><pub>Springer</pub><doi>10.1023/B:NEPL.0000016851.47914.40</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1370-4621 |
ispartof | Neural processing letters, 2004-02, Vol.19 (1), p.73-87 |
issn | 1370-4621 1573-773X |
language | eng |
recordid | cdi_proquest_journals_2918338450 |
source | ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Algorithms Applied sciences Artificial intelligence Computer science control theory systems Connectionism. Neural networks Exact sciences and technology Jamming performance Neural networks Remote sensing Rough set models |
title | Rough neural network of variable precision |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A39%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rough%20neural%20network%20of%20variable%20precision&rft.jtitle=Neural%20processing%20letters&rft.au=Liu,%20Hongjian&rft.date=2004-02-01&rft.volume=19&rft.issue=1&rft.spage=73&rft.epage=87&rft.pages=73-87&rft.issn=1370-4621&rft.eissn=1573-773X&rft_id=info:doi/10.1023/B:NEPL.0000016851.47914.40&rft_dat=%3Cproquest_cross%3E2918338450%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918338450&rft_id=info:pmid/&rfr_iscdi=true |