Bifurcation analysis of double cavity flows
The first few bifurcations in a two-dimensional incompressible double cavity flow are investigated using the linear stability analysis, the Floquet analysis, and the nonlinear direct numerical simulations (DNS). The prediction of the critical Reynolds number and the type of bifurcation (Hopf, pitchf...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2024-01, Vol.36 (1) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Physics of fluids (1994) |
container_volume | 36 |
creator | Vashishtha, Manas Vinoth, B. R. |
description | The first few bifurcations in a two-dimensional incompressible double cavity flow are investigated using the linear stability analysis, the Floquet analysis, and the nonlinear direct numerical simulations (DNS). The prediction of the critical Reynolds number and the type of bifurcation (Hopf, pitchfork, inverse pitchfork, and Neimark–Sacker), which depend on cavity configuration, by the linear stability analysis and the Floquet analysis is consistent with nonlinear DNS. The nonlinear DNS results show that the state of the system passes through multiple intermediate (unstable) states before it reaches the stable attractor (heteroclinic chain), and the type of intermediate states depends on initial conditions. The intermediate states are reported as the asymptotic state in the literature for some flow conditions because it is not known a priori how long it will take to reach the asymptotic state in nonlinear simulations. The present study reports the actual asymptotic state for those flow conditions. |
doi_str_mv | 10.1063/5.0184894 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918338299</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918338299</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-7805ad5e9e7c031046659c1a7165ce7355316bb4a826ea100bd06b3cf2328fa13</originalsourceid><addsrcrecordid>eNp90D1PwzAQBmALgUQpDPyDSEyAUu7s-GuEii-pEgvMluPYUqpQFzsB9d-Tks5Md8OjV3cvIZcICwTB7vgCUFVKV0dkhqB0KYUQx_tdQikEw1NylvMaAJimYkZuH9owJGf7Nm4Ku7HdLre5iKFo4lB3vnD2u-13RejiTz4nJ8F22V8c5px8PD2-L1_K1dvz6_J-VTpGZV9KBdw23GsvHTCESgiuHVqJgjsvGecMRV1XVlHhLQLUDYiauUAZVcEim5OrKXeb4tfgc2_WcUjjbdlQjYoxRbUe1fWkXIo5Jx_MNrWfNu0Mgtl3Ybg5dDHam8lm1_Z_v_6DfwHlSlv7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918338299</pqid></control><display><type>article</type><title>Bifurcation analysis of double cavity flows</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Vashishtha, Manas ; Vinoth, B. R.</creator><creatorcontrib>Vashishtha, Manas ; Vinoth, B. R.</creatorcontrib><description>The first few bifurcations in a two-dimensional incompressible double cavity flow are investigated using the linear stability analysis, the Floquet analysis, and the nonlinear direct numerical simulations (DNS). The prediction of the critical Reynolds number and the type of bifurcation (Hopf, pitchfork, inverse pitchfork, and Neimark–Sacker), which depend on cavity configuration, by the linear stability analysis and the Floquet analysis is consistent with nonlinear DNS. The nonlinear DNS results show that the state of the system passes through multiple intermediate (unstable) states before it reaches the stable attractor (heteroclinic chain), and the type of intermediate states depends on initial conditions. The intermediate states are reported as the asymptotic state in the literature for some flow conditions because it is not known a priori how long it will take to reach the asymptotic state in nonlinear simulations. The present study reports the actual asymptotic state for those flow conditions.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0184894</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Asymptotic properties ; Bifurcations ; Cavity flow ; Direct numerical simulation ; Flow stability ; Fluid flow ; Incompressible flow ; Initial conditions ; Reynolds number ; Stability analysis ; Two dimensional flow</subject><ispartof>Physics of fluids (1994), 2024-01, Vol.36 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-7805ad5e9e7c031046659c1a7165ce7355316bb4a826ea100bd06b3cf2328fa13</citedby><cites>FETCH-LOGICAL-c327t-7805ad5e9e7c031046659c1a7165ce7355316bb4a826ea100bd06b3cf2328fa13</cites><orcidid>0009-0001-3465-8391 ; 0000-0001-9669-7022</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,792,4500,27907,27908</link.rule.ids></links><search><creatorcontrib>Vashishtha, Manas</creatorcontrib><creatorcontrib>Vinoth, B. R.</creatorcontrib><title>Bifurcation analysis of double cavity flows</title><title>Physics of fluids (1994)</title><description>The first few bifurcations in a two-dimensional incompressible double cavity flow are investigated using the linear stability analysis, the Floquet analysis, and the nonlinear direct numerical simulations (DNS). The prediction of the critical Reynolds number and the type of bifurcation (Hopf, pitchfork, inverse pitchfork, and Neimark–Sacker), which depend on cavity configuration, by the linear stability analysis and the Floquet analysis is consistent with nonlinear DNS. The nonlinear DNS results show that the state of the system passes through multiple intermediate (unstable) states before it reaches the stable attractor (heteroclinic chain), and the type of intermediate states depends on initial conditions. The intermediate states are reported as the asymptotic state in the literature for some flow conditions because it is not known a priori how long it will take to reach the asymptotic state in nonlinear simulations. The present study reports the actual asymptotic state for those flow conditions.</description><subject>Asymptotic properties</subject><subject>Bifurcations</subject><subject>Cavity flow</subject><subject>Direct numerical simulation</subject><subject>Flow stability</subject><subject>Fluid flow</subject><subject>Incompressible flow</subject><subject>Initial conditions</subject><subject>Reynolds number</subject><subject>Stability analysis</subject><subject>Two dimensional flow</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90D1PwzAQBmALgUQpDPyDSEyAUu7s-GuEii-pEgvMluPYUqpQFzsB9d-Tks5Md8OjV3cvIZcICwTB7vgCUFVKV0dkhqB0KYUQx_tdQikEw1NylvMaAJimYkZuH9owJGf7Nm4Ku7HdLre5iKFo4lB3vnD2u-13RejiTz4nJ8F22V8c5px8PD2-L1_K1dvz6_J-VTpGZV9KBdw23GsvHTCESgiuHVqJgjsvGecMRV1XVlHhLQLUDYiauUAZVcEim5OrKXeb4tfgc2_WcUjjbdlQjYoxRbUe1fWkXIo5Jx_MNrWfNu0Mgtl3Ybg5dDHam8lm1_Z_v_6DfwHlSlv7</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Vashishtha, Manas</creator><creator>Vinoth, B. R.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0001-3465-8391</orcidid><orcidid>https://orcid.org/0000-0001-9669-7022</orcidid></search><sort><creationdate>202401</creationdate><title>Bifurcation analysis of double cavity flows</title><author>Vashishtha, Manas ; Vinoth, B. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-7805ad5e9e7c031046659c1a7165ce7355316bb4a826ea100bd06b3cf2328fa13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Asymptotic properties</topic><topic>Bifurcations</topic><topic>Cavity flow</topic><topic>Direct numerical simulation</topic><topic>Flow stability</topic><topic>Fluid flow</topic><topic>Incompressible flow</topic><topic>Initial conditions</topic><topic>Reynolds number</topic><topic>Stability analysis</topic><topic>Two dimensional flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vashishtha, Manas</creatorcontrib><creatorcontrib>Vinoth, B. R.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vashishtha, Manas</au><au>Vinoth, B. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bifurcation analysis of double cavity flows</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2024-01</date><risdate>2024</risdate><volume>36</volume><issue>1</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>The first few bifurcations in a two-dimensional incompressible double cavity flow are investigated using the linear stability analysis, the Floquet analysis, and the nonlinear direct numerical simulations (DNS). The prediction of the critical Reynolds number and the type of bifurcation (Hopf, pitchfork, inverse pitchfork, and Neimark–Sacker), which depend on cavity configuration, by the linear stability analysis and the Floquet analysis is consistent with nonlinear DNS. The nonlinear DNS results show that the state of the system passes through multiple intermediate (unstable) states before it reaches the stable attractor (heteroclinic chain), and the type of intermediate states depends on initial conditions. The intermediate states are reported as the asymptotic state in the literature for some flow conditions because it is not known a priori how long it will take to reach the asymptotic state in nonlinear simulations. The present study reports the actual asymptotic state for those flow conditions.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0184894</doi><tpages>10</tpages><orcidid>https://orcid.org/0009-0001-3465-8391</orcidid><orcidid>https://orcid.org/0000-0001-9669-7022</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2024-01, Vol.36 (1) |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_proquest_journals_2918338299 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Asymptotic properties Bifurcations Cavity flow Direct numerical simulation Flow stability Fluid flow Incompressible flow Initial conditions Reynolds number Stability analysis Two dimensional flow |
title | Bifurcation analysis of double cavity flows |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T21%3A37%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bifurcation%20analysis%20of%20double%20cavity%20flows&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Vashishtha,%20Manas&rft.date=2024-01&rft.volume=36&rft.issue=1&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0184894&rft_dat=%3Cproquest_cross%3E2918338299%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918338299&rft_id=info:pmid/&rfr_iscdi=true |