Bifurcation analysis of double cavity flows

The first few bifurcations in a two-dimensional incompressible double cavity flow are investigated using the linear stability analysis, the Floquet analysis, and the nonlinear direct numerical simulations (DNS). The prediction of the critical Reynolds number and the type of bifurcation (Hopf, pitchf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2024-01, Vol.36 (1)
Hauptverfasser: Vashishtha, Manas, Vinoth, B. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Physics of fluids (1994)
container_volume 36
creator Vashishtha, Manas
Vinoth, B. R.
description The first few bifurcations in a two-dimensional incompressible double cavity flow are investigated using the linear stability analysis, the Floquet analysis, and the nonlinear direct numerical simulations (DNS). The prediction of the critical Reynolds number and the type of bifurcation (Hopf, pitchfork, inverse pitchfork, and Neimark–Sacker), which depend on cavity configuration, by the linear stability analysis and the Floquet analysis is consistent with nonlinear DNS. The nonlinear DNS results show that the state of the system passes through multiple intermediate (unstable) states before it reaches the stable attractor (heteroclinic chain), and the type of intermediate states depends on initial conditions. The intermediate states are reported as the asymptotic state in the literature for some flow conditions because it is not known a priori how long it will take to reach the asymptotic state in nonlinear simulations. The present study reports the actual asymptotic state for those flow conditions.
doi_str_mv 10.1063/5.0184894
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918338299</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918338299</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-7805ad5e9e7c031046659c1a7165ce7355316bb4a826ea100bd06b3cf2328fa13</originalsourceid><addsrcrecordid>eNp90D1PwzAQBmALgUQpDPyDSEyAUu7s-GuEii-pEgvMluPYUqpQFzsB9d-Tks5Md8OjV3cvIZcICwTB7vgCUFVKV0dkhqB0KYUQx_tdQikEw1NylvMaAJimYkZuH9owJGf7Nm4Ku7HdLre5iKFo4lB3vnD2u-13RejiTz4nJ8F22V8c5px8PD2-L1_K1dvz6_J-VTpGZV9KBdw23GsvHTCESgiuHVqJgjsvGecMRV1XVlHhLQLUDYiauUAZVcEim5OrKXeb4tfgc2_WcUjjbdlQjYoxRbUe1fWkXIo5Jx_MNrWfNu0Mgtl3Ybg5dDHam8lm1_Z_v_6DfwHlSlv7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918338299</pqid></control><display><type>article</type><title>Bifurcation analysis of double cavity flows</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Vashishtha, Manas ; Vinoth, B. R.</creator><creatorcontrib>Vashishtha, Manas ; Vinoth, B. R.</creatorcontrib><description>The first few bifurcations in a two-dimensional incompressible double cavity flow are investigated using the linear stability analysis, the Floquet analysis, and the nonlinear direct numerical simulations (DNS). The prediction of the critical Reynolds number and the type of bifurcation (Hopf, pitchfork, inverse pitchfork, and Neimark–Sacker), which depend on cavity configuration, by the linear stability analysis and the Floquet analysis is consistent with nonlinear DNS. The nonlinear DNS results show that the state of the system passes through multiple intermediate (unstable) states before it reaches the stable attractor (heteroclinic chain), and the type of intermediate states depends on initial conditions. The intermediate states are reported as the asymptotic state in the literature for some flow conditions because it is not known a priori how long it will take to reach the asymptotic state in nonlinear simulations. The present study reports the actual asymptotic state for those flow conditions.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0184894</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Asymptotic properties ; Bifurcations ; Cavity flow ; Direct numerical simulation ; Flow stability ; Fluid flow ; Incompressible flow ; Initial conditions ; Reynolds number ; Stability analysis ; Two dimensional flow</subject><ispartof>Physics of fluids (1994), 2024-01, Vol.36 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-7805ad5e9e7c031046659c1a7165ce7355316bb4a826ea100bd06b3cf2328fa13</citedby><cites>FETCH-LOGICAL-c327t-7805ad5e9e7c031046659c1a7165ce7355316bb4a826ea100bd06b3cf2328fa13</cites><orcidid>0009-0001-3465-8391 ; 0000-0001-9669-7022</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,792,4500,27907,27908</link.rule.ids></links><search><creatorcontrib>Vashishtha, Manas</creatorcontrib><creatorcontrib>Vinoth, B. R.</creatorcontrib><title>Bifurcation analysis of double cavity flows</title><title>Physics of fluids (1994)</title><description>The first few bifurcations in a two-dimensional incompressible double cavity flow are investigated using the linear stability analysis, the Floquet analysis, and the nonlinear direct numerical simulations (DNS). The prediction of the critical Reynolds number and the type of bifurcation (Hopf, pitchfork, inverse pitchfork, and Neimark–Sacker), which depend on cavity configuration, by the linear stability analysis and the Floquet analysis is consistent with nonlinear DNS. The nonlinear DNS results show that the state of the system passes through multiple intermediate (unstable) states before it reaches the stable attractor (heteroclinic chain), and the type of intermediate states depends on initial conditions. The intermediate states are reported as the asymptotic state in the literature for some flow conditions because it is not known a priori how long it will take to reach the asymptotic state in nonlinear simulations. The present study reports the actual asymptotic state for those flow conditions.</description><subject>Asymptotic properties</subject><subject>Bifurcations</subject><subject>Cavity flow</subject><subject>Direct numerical simulation</subject><subject>Flow stability</subject><subject>Fluid flow</subject><subject>Incompressible flow</subject><subject>Initial conditions</subject><subject>Reynolds number</subject><subject>Stability analysis</subject><subject>Two dimensional flow</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90D1PwzAQBmALgUQpDPyDSEyAUu7s-GuEii-pEgvMluPYUqpQFzsB9d-Tks5Md8OjV3cvIZcICwTB7vgCUFVKV0dkhqB0KYUQx_tdQikEw1NylvMaAJimYkZuH9owJGf7Nm4Ku7HdLre5iKFo4lB3vnD2u-13RejiTz4nJ8F22V8c5px8PD2-L1_K1dvz6_J-VTpGZV9KBdw23GsvHTCESgiuHVqJgjsvGecMRV1XVlHhLQLUDYiauUAZVcEim5OrKXeb4tfgc2_WcUjjbdlQjYoxRbUe1fWkXIo5Jx_MNrWfNu0Mgtl3Ybg5dDHam8lm1_Z_v_6DfwHlSlv7</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Vashishtha, Manas</creator><creator>Vinoth, B. R.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0001-3465-8391</orcidid><orcidid>https://orcid.org/0000-0001-9669-7022</orcidid></search><sort><creationdate>202401</creationdate><title>Bifurcation analysis of double cavity flows</title><author>Vashishtha, Manas ; Vinoth, B. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-7805ad5e9e7c031046659c1a7165ce7355316bb4a826ea100bd06b3cf2328fa13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Asymptotic properties</topic><topic>Bifurcations</topic><topic>Cavity flow</topic><topic>Direct numerical simulation</topic><topic>Flow stability</topic><topic>Fluid flow</topic><topic>Incompressible flow</topic><topic>Initial conditions</topic><topic>Reynolds number</topic><topic>Stability analysis</topic><topic>Two dimensional flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vashishtha, Manas</creatorcontrib><creatorcontrib>Vinoth, B. R.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vashishtha, Manas</au><au>Vinoth, B. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bifurcation analysis of double cavity flows</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2024-01</date><risdate>2024</risdate><volume>36</volume><issue>1</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>The first few bifurcations in a two-dimensional incompressible double cavity flow are investigated using the linear stability analysis, the Floquet analysis, and the nonlinear direct numerical simulations (DNS). The prediction of the critical Reynolds number and the type of bifurcation (Hopf, pitchfork, inverse pitchfork, and Neimark–Sacker), which depend on cavity configuration, by the linear stability analysis and the Floquet analysis is consistent with nonlinear DNS. The nonlinear DNS results show that the state of the system passes through multiple intermediate (unstable) states before it reaches the stable attractor (heteroclinic chain), and the type of intermediate states depends on initial conditions. The intermediate states are reported as the asymptotic state in the literature for some flow conditions because it is not known a priori how long it will take to reach the asymptotic state in nonlinear simulations. The present study reports the actual asymptotic state for those flow conditions.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0184894</doi><tpages>10</tpages><orcidid>https://orcid.org/0009-0001-3465-8391</orcidid><orcidid>https://orcid.org/0000-0001-9669-7022</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2024-01, Vol.36 (1)
issn 1070-6631
1089-7666
language eng
recordid cdi_proquest_journals_2918338299
source AIP Journals Complete; Alma/SFX Local Collection
subjects Asymptotic properties
Bifurcations
Cavity flow
Direct numerical simulation
Flow stability
Fluid flow
Incompressible flow
Initial conditions
Reynolds number
Stability analysis
Two dimensional flow
title Bifurcation analysis of double cavity flows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T21%3A37%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bifurcation%20analysis%20of%20double%20cavity%20flows&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Vashishtha,%20Manas&rft.date=2024-01&rft.volume=36&rft.issue=1&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0184894&rft_dat=%3Cproquest_cross%3E2918338299%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918338299&rft_id=info:pmid/&rfr_iscdi=true