Algorithmic Optimization of an Underground Witwatersrand-Type Gold Mine Plan
In the mining environment, mine planning is complicated by the presence of unfavorable environmental conditions, limited knowledge of the shape and size of the deposit, ore body characteristics, and volatile market conditions. In this paper, we propose a top-down algorithmic approach to strategicall...
Gespeichert in:
Veröffentlicht in: | Natural resources research (New York, N.Y.) N.Y.), 2021-04, Vol.30 (2), p.1175-1197 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1197 |
---|---|
container_issue | 2 |
container_start_page | 1175 |
container_title | Natural resources research (New York, N.Y.) |
container_volume | 30 |
creator | Nwaila, G. T. Zhang, S. E. Tolmay, L. C. K. Frimmel, H. E. |
description | In the mining environment, mine planning is complicated by the presence of unfavorable environmental conditions, limited knowledge of the shape and size of the deposit, ore body characteristics, and volatile market conditions. In this paper, we propose a top-down algorithmic approach to strategically optimize the cutoff grade and net present value (NPV), and implement its solutions at the operation level, while simultaneously mitigating operation risks, to maximize the life of an ultra-deep gold mine from the Witwatersrand Basin, South Africa. To date, the Witwatersrand Basin has contributed about 28% of the world’s total gold supply from a series of Mesoarchaean quartz pebble conglomerate units (referred to as reefs). Through a quantitative analysis using algebraic and stochastic methods, we ranked mining variables in terms of their margin sensitivity and impact/adjustability efficacy. The results of this study showed the following. By using our proposed approach, an underground mine plan can be optimized by focusing on few key variables. Strategic mining of combinations of high-grade panels with low-grade panels and counter-balancing their risk profiles can yield optimal executable mine plan results (i.e., higher NPV, ideal profit margin, and lower risk) without sterilizing a given mineral resource for underground mining operations. |
doi_str_mv | 10.1007/s11053-020-09772-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918336829</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918336829</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-1c640e5d7d077ae1e1d50d3ade88db6452f358922a8541c9d74d13658d6bd0ec3</originalsourceid><addsrcrecordid>eNp9kM1KAzEURoMoWKsv4CrgOpqfySRZlqKtUKmLFpchnWRqyjQZkylSn96pI7hzdS_c73wXDgC3BN8TjMVDJgRzhjDFCCshKBJnYES4YEgqSc5Pe38SBVOX4CrnHe4hJvkILCbNNibfve99BZdt5_f-y3Q-BhhraAJcB-vSNsVDsPDNd5-mcyknEyxaHVsHZ7Gx8MUHB18bE67BRW2a7G5-5xisnx5X0zlaLGfP08kCVYyoDpGqLLDjVlgshHHEEcuxZcY6Ke2mLDitGZeKUiN5QSplRWEJK7m05cZiV7ExuBt62xQ_Di53ehcPKfQvNVVEMlZKqvoUHVJVijknV-s2-b1JR02wPlnTgzXdW9M_1rToITZAuQ-HrUt_1f9Q3yBcb4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918336829</pqid></control><display><type>article</type><title>Algorithmic Optimization of an Underground Witwatersrand-Type Gold Mine Plan</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central</source><creator>Nwaila, G. T. ; Zhang, S. E. ; Tolmay, L. C. K. ; Frimmel, H. E.</creator><creatorcontrib>Nwaila, G. T. ; Zhang, S. E. ; Tolmay, L. C. K. ; Frimmel, H. E.</creatorcontrib><description>In the mining environment, mine planning is complicated by the presence of unfavorable environmental conditions, limited knowledge of the shape and size of the deposit, ore body characteristics, and volatile market conditions. In this paper, we propose a top-down algorithmic approach to strategically optimize the cutoff grade and net present value (NPV), and implement its solutions at the operation level, while simultaneously mitigating operation risks, to maximize the life of an ultra-deep gold mine from the Witwatersrand Basin, South Africa. To date, the Witwatersrand Basin has contributed about 28% of the world’s total gold supply from a series of Mesoarchaean quartz pebble conglomerate units (referred to as reefs). Through a quantitative analysis using algebraic and stochastic methods, we ranked mining variables in terms of their margin sensitivity and impact/adjustability efficacy. The results of this study showed the following. By using our proposed approach, an underground mine plan can be optimized by focusing on few key variables. Strategic mining of combinations of high-grade panels with low-grade panels and counter-balancing their risk profiles can yield optimal executable mine plan results (i.e., higher NPV, ideal profit margin, and lower risk) without sterilizing a given mineral resource for underground mining operations.</description><identifier>ISSN: 1520-7439</identifier><identifier>EISSN: 1573-8981</identifier><identifier>DOI: 10.1007/s11053-020-09772-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Chemistry and Earth Sciences ; Computer Science ; Cut off grades ; Earth and Environmental Science ; Earth Sciences ; Environmental conditions ; Fossil Fuels (incl. Carbon Capture) ; Geography ; Gold ; Mathematical analysis ; Mathematical Modeling and Industrial Mathematics ; Mineral Resources ; Mining ; Net present value ; Optimization ; Original Paper ; Panels ; Physics ; Risk assessment ; Statistics for Engineering ; Sustainable Development ; Underground mines ; Underground mining</subject><ispartof>Natural resources research (New York, N.Y.), 2021-04, Vol.30 (2), p.1175-1197</ispartof><rights>International Association for Mathematical Geosciences 2020</rights><rights>International Association for Mathematical Geosciences 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-1c640e5d7d077ae1e1d50d3ade88db6452f358922a8541c9d74d13658d6bd0ec3</citedby><cites>FETCH-LOGICAL-c319t-1c640e5d7d077ae1e1d50d3ade88db6452f358922a8541c9d74d13658d6bd0ec3</cites><orcidid>0000-0002-3974-9890</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11053-020-09772-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918336829?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Nwaila, G. T.</creatorcontrib><creatorcontrib>Zhang, S. E.</creatorcontrib><creatorcontrib>Tolmay, L. C. K.</creatorcontrib><creatorcontrib>Frimmel, H. E.</creatorcontrib><title>Algorithmic Optimization of an Underground Witwatersrand-Type Gold Mine Plan</title><title>Natural resources research (New York, N.Y.)</title><addtitle>Nat Resour Res</addtitle><description>In the mining environment, mine planning is complicated by the presence of unfavorable environmental conditions, limited knowledge of the shape and size of the deposit, ore body characteristics, and volatile market conditions. In this paper, we propose a top-down algorithmic approach to strategically optimize the cutoff grade and net present value (NPV), and implement its solutions at the operation level, while simultaneously mitigating operation risks, to maximize the life of an ultra-deep gold mine from the Witwatersrand Basin, South Africa. To date, the Witwatersrand Basin has contributed about 28% of the world’s total gold supply from a series of Mesoarchaean quartz pebble conglomerate units (referred to as reefs). Through a quantitative analysis using algebraic and stochastic methods, we ranked mining variables in terms of their margin sensitivity and impact/adjustability efficacy. The results of this study showed the following. By using our proposed approach, an underground mine plan can be optimized by focusing on few key variables. Strategic mining of combinations of high-grade panels with low-grade panels and counter-balancing their risk profiles can yield optimal executable mine plan results (i.e., higher NPV, ideal profit margin, and lower risk) without sterilizing a given mineral resource for underground mining operations.</description><subject>Algorithms</subject><subject>Chemistry and Earth Sciences</subject><subject>Computer Science</subject><subject>Cut off grades</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Environmental conditions</subject><subject>Fossil Fuels (incl. Carbon Capture)</subject><subject>Geography</subject><subject>Gold</subject><subject>Mathematical analysis</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mineral Resources</subject><subject>Mining</subject><subject>Net present value</subject><subject>Optimization</subject><subject>Original Paper</subject><subject>Panels</subject><subject>Physics</subject><subject>Risk assessment</subject><subject>Statistics for Engineering</subject><subject>Sustainable Development</subject><subject>Underground mines</subject><subject>Underground mining</subject><issn>1520-7439</issn><issn>1573-8981</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kM1KAzEURoMoWKsv4CrgOpqfySRZlqKtUKmLFpchnWRqyjQZkylSn96pI7hzdS_c73wXDgC3BN8TjMVDJgRzhjDFCCshKBJnYES4YEgqSc5Pe38SBVOX4CrnHe4hJvkILCbNNibfve99BZdt5_f-y3Q-BhhraAJcB-vSNsVDsPDNd5-mcyknEyxaHVsHZ7Gx8MUHB18bE67BRW2a7G5-5xisnx5X0zlaLGfP08kCVYyoDpGqLLDjVlgshHHEEcuxZcY6Ke2mLDitGZeKUiN5QSplRWEJK7m05cZiV7ExuBt62xQ_Di53ehcPKfQvNVVEMlZKqvoUHVJVijknV-s2-b1JR02wPlnTgzXdW9M_1rToITZAuQ-HrUt_1f9Q3yBcb4Q</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Nwaila, G. T.</creator><creator>Zhang, S. E.</creator><creator>Tolmay, L. C. K.</creator><creator>Frimmel, H. E.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><orcidid>https://orcid.org/0000-0002-3974-9890</orcidid></search><sort><creationdate>20210401</creationdate><title>Algorithmic Optimization of an Underground Witwatersrand-Type Gold Mine Plan</title><author>Nwaila, G. T. ; Zhang, S. E. ; Tolmay, L. C. K. ; Frimmel, H. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-1c640e5d7d077ae1e1d50d3ade88db6452f358922a8541c9d74d13658d6bd0ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Chemistry and Earth Sciences</topic><topic>Computer Science</topic><topic>Cut off grades</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Environmental conditions</topic><topic>Fossil Fuels (incl. Carbon Capture)</topic><topic>Geography</topic><topic>Gold</topic><topic>Mathematical analysis</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mineral Resources</topic><topic>Mining</topic><topic>Net present value</topic><topic>Optimization</topic><topic>Original Paper</topic><topic>Panels</topic><topic>Physics</topic><topic>Risk assessment</topic><topic>Statistics for Engineering</topic><topic>Sustainable Development</topic><topic>Underground mines</topic><topic>Underground mining</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nwaila, G. T.</creatorcontrib><creatorcontrib>Zhang, S. E.</creatorcontrib><creatorcontrib>Tolmay, L. C. K.</creatorcontrib><creatorcontrib>Frimmel, H. E.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><jtitle>Natural resources research (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nwaila, G. T.</au><au>Zhang, S. E.</au><au>Tolmay, L. C. K.</au><au>Frimmel, H. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Algorithmic Optimization of an Underground Witwatersrand-Type Gold Mine Plan</atitle><jtitle>Natural resources research (New York, N.Y.)</jtitle><stitle>Nat Resour Res</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>30</volume><issue>2</issue><spage>1175</spage><epage>1197</epage><pages>1175-1197</pages><issn>1520-7439</issn><eissn>1573-8981</eissn><abstract>In the mining environment, mine planning is complicated by the presence of unfavorable environmental conditions, limited knowledge of the shape and size of the deposit, ore body characteristics, and volatile market conditions. In this paper, we propose a top-down algorithmic approach to strategically optimize the cutoff grade and net present value (NPV), and implement its solutions at the operation level, while simultaneously mitigating operation risks, to maximize the life of an ultra-deep gold mine from the Witwatersrand Basin, South Africa. To date, the Witwatersrand Basin has contributed about 28% of the world’s total gold supply from a series of Mesoarchaean quartz pebble conglomerate units (referred to as reefs). Through a quantitative analysis using algebraic and stochastic methods, we ranked mining variables in terms of their margin sensitivity and impact/adjustability efficacy. The results of this study showed the following. By using our proposed approach, an underground mine plan can be optimized by focusing on few key variables. Strategic mining of combinations of high-grade panels with low-grade panels and counter-balancing their risk profiles can yield optimal executable mine plan results (i.e., higher NPV, ideal profit margin, and lower risk) without sterilizing a given mineral resource for underground mining operations.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11053-020-09772-7</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-3974-9890</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1520-7439 |
ispartof | Natural resources research (New York, N.Y.), 2021-04, Vol.30 (2), p.1175-1197 |
issn | 1520-7439 1573-8981 |
language | eng |
recordid | cdi_proquest_journals_2918336829 |
source | Springer Nature - Complete Springer Journals; ProQuest Central |
subjects | Algorithms Chemistry and Earth Sciences Computer Science Cut off grades Earth and Environmental Science Earth Sciences Environmental conditions Fossil Fuels (incl. Carbon Capture) Geography Gold Mathematical analysis Mathematical Modeling and Industrial Mathematics Mineral Resources Mining Net present value Optimization Original Paper Panels Physics Risk assessment Statistics for Engineering Sustainable Development Underground mines Underground mining |
title | Algorithmic Optimization of an Underground Witwatersrand-Type Gold Mine Plan |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T17%3A21%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Algorithmic%20Optimization%20of%20an%20Underground%20Witwatersrand-Type%20Gold%20Mine%20Plan&rft.jtitle=Natural%20resources%20research%20(New%20York,%20N.Y.)&rft.au=Nwaila,%20G.%20T.&rft.date=2021-04-01&rft.volume=30&rft.issue=2&rft.spage=1175&rft.epage=1197&rft.pages=1175-1197&rft.issn=1520-7439&rft.eissn=1573-8981&rft_id=info:doi/10.1007/s11053-020-09772-7&rft_dat=%3Cproquest_cross%3E2918336829%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918336829&rft_id=info:pmid/&rfr_iscdi=true |