Integrated Data Assimilation and Distance-Based Model Selection with Ensemble Kalman Filter for Characterization of Uncertain Geological Scenarios
This paper develops a reliable workflow for multi-objective history matching coupled with a distance-based model selection and ensemble-based data assimilation at a clastic channel reservoir with uncertain geological scenarios. The distance map allocated to each producer determines the probabilities...
Gespeichert in:
Veröffentlicht in: | Natural resources research (New York, N.Y.) N.Y.), 2020-04, Vol.29 (2), p.1063-1085 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1085 |
---|---|
container_issue | 2 |
container_start_page | 1063 |
container_title | Natural resources research (New York, N.Y.) |
container_volume | 29 |
creator | Lim, Seojin Park, Changhyup Kim, Jaejun Jang, Ilsik |
description | This paper develops a reliable workflow for multi-objective history matching coupled with a distance-based model selection and ensemble-based data assimilation at a clastic channel reservoir with uncertain geological scenarios. The distance map allocated to each producer determines the probabilities of training images which assess the uncertainty of geological scenarios. K-medoids clustering selects the reservoir models within the ensemble set applied with some training images with less error. These geo-models play as initial ensembles suitable to explain the geological scenarios and ensemble Kalman filter recursively assimilates the oil rates of each producer. The developed workflow, updating reliable reservoir models suitable for well-performance-based history matching, more accurately forecasts water breakthrough and improves the predictability of unknown oil rates with a lower error than those of the conventional ensemble Kalman filter. This framework is able to preserve the spatial characteristics of facies models and reservoir properties without interpreting one fixed scenario. The proposed method can contribute to a reasonable design for data analytics with uncertain geological scenarios and for matching different-scaled well production histories. |
doi_str_mv | 10.1007/s11053-019-09489-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918321873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918321873</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-6e9befdf2af54f459d551146e68238e2eddb8b5bc3291ef9a24720c6a013786d3</originalsourceid><addsrcrecordid>eNp9kMtOHDEQRVsRSOGRH8jKUtYGP_phL8nwCALEAmZtVbvLg1GPTWyjKPkMvjgeOhK7rMpl3XNKuk3zlbMTzthwmjlnnaSMa8p0qzQVn5oD3g2SKq343u4tGB1aqT83hzk_swpJ1R00b9eh4CZBwYmcQwFylrPf-hmKj4FAqL8-FwgW6XfINXQXJ5zJA85o3yO_fHkiFyHjdpyR3MC8hUAu_VwwERcTWT1BAls3_2dxRkfWVZcK-ECuMM5x4y1UpcUAycd83Ow7mDN--TePmvXlxePqB729v7pend1SK7kutEc9opucANe1ru301HWctz32SkiFAqdpVGM3Wik0R6dBtINgtgfG5aD6SR413xbvS4o_XzEX8xxfU6gnTSWUFFwNsqbEkrIp5pzQmZfkt5B-G87MrnuzdG9q9-a9eyMqJBco13DYYPpQ_4f6C_7ZiZE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918321873</pqid></control><display><type>article</type><title>Integrated Data Assimilation and Distance-Based Model Selection with Ensemble Kalman Filter for Characterization of Uncertain Geological Scenarios</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Lim, Seojin ; Park, Changhyup ; Kim, Jaejun ; Jang, Ilsik</creator><creatorcontrib>Lim, Seojin ; Park, Changhyup ; Kim, Jaejun ; Jang, Ilsik</creatorcontrib><description>This paper develops a reliable workflow for multi-objective history matching coupled with a distance-based model selection and ensemble-based data assimilation at a clastic channel reservoir with uncertain geological scenarios. The distance map allocated to each producer determines the probabilities of training images which assess the uncertainty of geological scenarios. K-medoids clustering selects the reservoir models within the ensemble set applied with some training images with less error. These geo-models play as initial ensembles suitable to explain the geological scenarios and ensemble Kalman filter recursively assimilates the oil rates of each producer. The developed workflow, updating reliable reservoir models suitable for well-performance-based history matching, more accurately forecasts water breakthrough and improves the predictability of unknown oil rates with a lower error than those of the conventional ensemble Kalman filter. This framework is able to preserve the spatial characteristics of facies models and reservoir properties without interpreting one fixed scenario. The proposed method can contribute to a reasonable design for data analytics with uncertain geological scenarios and for matching different-scaled well production histories.</description><identifier>ISSN: 1520-7439</identifier><identifier>EISSN: 1573-8981</identifier><identifier>DOI: 10.1007/s11053-019-09489-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Chemistry and Earth Sciences ; Clustering ; Computer Science ; Data assimilation ; Data collection ; Earth and Environmental Science ; Earth Sciences ; Fossil Fuels (incl. Carbon Capture) ; Geography ; Geological mapping ; Geology ; Kalman filters ; Matching ; Mathematical Modeling and Industrial Mathematics ; Mineral Resources ; Original Paper ; Physics ; Reservoirs ; Statistics for Engineering ; Sustainable Development ; Training ; Workflow</subject><ispartof>Natural resources research (New York, N.Y.), 2020-04, Vol.29 (2), p.1063-1085</ispartof><rights>International Association for Mathematical Geosciences 2019</rights><rights>International Association for Mathematical Geosciences 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-6e9befdf2af54f459d551146e68238e2eddb8b5bc3291ef9a24720c6a013786d3</citedby><cites>FETCH-LOGICAL-c319t-6e9befdf2af54f459d551146e68238e2eddb8b5bc3291ef9a24720c6a013786d3</cites><orcidid>0000-0001-8083-6809</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11053-019-09489-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918321873?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21368,27903,27904,33723,41467,42536,43784,51298,64362,64366,72216</link.rule.ids></links><search><creatorcontrib>Lim, Seojin</creatorcontrib><creatorcontrib>Park, Changhyup</creatorcontrib><creatorcontrib>Kim, Jaejun</creatorcontrib><creatorcontrib>Jang, Ilsik</creatorcontrib><title>Integrated Data Assimilation and Distance-Based Model Selection with Ensemble Kalman Filter for Characterization of Uncertain Geological Scenarios</title><title>Natural resources research (New York, N.Y.)</title><addtitle>Nat Resour Res</addtitle><description>This paper develops a reliable workflow for multi-objective history matching coupled with a distance-based model selection and ensemble-based data assimilation at a clastic channel reservoir with uncertain geological scenarios. The distance map allocated to each producer determines the probabilities of training images which assess the uncertainty of geological scenarios. K-medoids clustering selects the reservoir models within the ensemble set applied with some training images with less error. These geo-models play as initial ensembles suitable to explain the geological scenarios and ensemble Kalman filter recursively assimilates the oil rates of each producer. The developed workflow, updating reliable reservoir models suitable for well-performance-based history matching, more accurately forecasts water breakthrough and improves the predictability of unknown oil rates with a lower error than those of the conventional ensemble Kalman filter. This framework is able to preserve the spatial characteristics of facies models and reservoir properties without interpreting one fixed scenario. The proposed method can contribute to a reasonable design for data analytics with uncertain geological scenarios and for matching different-scaled well production histories.</description><subject>Chemistry and Earth Sciences</subject><subject>Clustering</subject><subject>Computer Science</subject><subject>Data assimilation</subject><subject>Data collection</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Fossil Fuels (incl. Carbon Capture)</subject><subject>Geography</subject><subject>Geological mapping</subject><subject>Geology</subject><subject>Kalman filters</subject><subject>Matching</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mineral Resources</subject><subject>Original Paper</subject><subject>Physics</subject><subject>Reservoirs</subject><subject>Statistics for Engineering</subject><subject>Sustainable Development</subject><subject>Training</subject><subject>Workflow</subject><issn>1520-7439</issn><issn>1573-8981</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMtOHDEQRVsRSOGRH8jKUtYGP_phL8nwCALEAmZtVbvLg1GPTWyjKPkMvjgeOhK7rMpl3XNKuk3zlbMTzthwmjlnnaSMa8p0qzQVn5oD3g2SKq343u4tGB1aqT83hzk_swpJ1R00b9eh4CZBwYmcQwFylrPf-hmKj4FAqL8-FwgW6XfINXQXJ5zJA85o3yO_fHkiFyHjdpyR3MC8hUAu_VwwERcTWT1BAls3_2dxRkfWVZcK-ECuMM5x4y1UpcUAycd83Ow7mDN--TePmvXlxePqB729v7pend1SK7kutEc9opucANe1ru301HWctz32SkiFAqdpVGM3Wik0R6dBtINgtgfG5aD6SR413xbvS4o_XzEX8xxfU6gnTSWUFFwNsqbEkrIp5pzQmZfkt5B-G87MrnuzdG9q9-a9eyMqJBco13DYYPpQ_4f6C_7ZiZE</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Lim, Seojin</creator><creator>Park, Changhyup</creator><creator>Kim, Jaejun</creator><creator>Jang, Ilsik</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><orcidid>https://orcid.org/0000-0001-8083-6809</orcidid></search><sort><creationdate>20200401</creationdate><title>Integrated Data Assimilation and Distance-Based Model Selection with Ensemble Kalman Filter for Characterization of Uncertain Geological Scenarios</title><author>Lim, Seojin ; Park, Changhyup ; Kim, Jaejun ; Jang, Ilsik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-6e9befdf2af54f459d551146e68238e2eddb8b5bc3291ef9a24720c6a013786d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemistry and Earth Sciences</topic><topic>Clustering</topic><topic>Computer Science</topic><topic>Data assimilation</topic><topic>Data collection</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Fossil Fuels (incl. Carbon Capture)</topic><topic>Geography</topic><topic>Geological mapping</topic><topic>Geology</topic><topic>Kalman filters</topic><topic>Matching</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mineral Resources</topic><topic>Original Paper</topic><topic>Physics</topic><topic>Reservoirs</topic><topic>Statistics for Engineering</topic><topic>Sustainable Development</topic><topic>Training</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lim, Seojin</creatorcontrib><creatorcontrib>Park, Changhyup</creatorcontrib><creatorcontrib>Kim, Jaejun</creatorcontrib><creatorcontrib>Jang, Ilsik</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><jtitle>Natural resources research (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lim, Seojin</au><au>Park, Changhyup</au><au>Kim, Jaejun</au><au>Jang, Ilsik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrated Data Assimilation and Distance-Based Model Selection with Ensemble Kalman Filter for Characterization of Uncertain Geological Scenarios</atitle><jtitle>Natural resources research (New York, N.Y.)</jtitle><stitle>Nat Resour Res</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>29</volume><issue>2</issue><spage>1063</spage><epage>1085</epage><pages>1063-1085</pages><issn>1520-7439</issn><eissn>1573-8981</eissn><abstract>This paper develops a reliable workflow for multi-objective history matching coupled with a distance-based model selection and ensemble-based data assimilation at a clastic channel reservoir with uncertain geological scenarios. The distance map allocated to each producer determines the probabilities of training images which assess the uncertainty of geological scenarios. K-medoids clustering selects the reservoir models within the ensemble set applied with some training images with less error. These geo-models play as initial ensembles suitable to explain the geological scenarios and ensemble Kalman filter recursively assimilates the oil rates of each producer. The developed workflow, updating reliable reservoir models suitable for well-performance-based history matching, more accurately forecasts water breakthrough and improves the predictability of unknown oil rates with a lower error than those of the conventional ensemble Kalman filter. This framework is able to preserve the spatial characteristics of facies models and reservoir properties without interpreting one fixed scenario. The proposed method can contribute to a reasonable design for data analytics with uncertain geological scenarios and for matching different-scaled well production histories.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11053-019-09489-2</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0001-8083-6809</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1520-7439 |
ispartof | Natural resources research (New York, N.Y.), 2020-04, Vol.29 (2), p.1063-1085 |
issn | 1520-7439 1573-8981 |
language | eng |
recordid | cdi_proquest_journals_2918321873 |
source | Springer Nature - Complete Springer Journals; ProQuest Central UK/Ireland; ProQuest Central |
subjects | Chemistry and Earth Sciences Clustering Computer Science Data assimilation Data collection Earth and Environmental Science Earth Sciences Fossil Fuels (incl. Carbon Capture) Geography Geological mapping Geology Kalman filters Matching Mathematical Modeling and Industrial Mathematics Mineral Resources Original Paper Physics Reservoirs Statistics for Engineering Sustainable Development Training Workflow |
title | Integrated Data Assimilation and Distance-Based Model Selection with Ensemble Kalman Filter for Characterization of Uncertain Geological Scenarios |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T14%3A58%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrated%20Data%20Assimilation%20and%20Distance-Based%20Model%20Selection%20with%20Ensemble%20Kalman%20Filter%20for%20Characterization%20of%20Uncertain%20Geological%20Scenarios&rft.jtitle=Natural%20resources%20research%20(New%20York,%20N.Y.)&rft.au=Lim,%20Seojin&rft.date=2020-04-01&rft.volume=29&rft.issue=2&rft.spage=1063&rft.epage=1085&rft.pages=1063-1085&rft.issn=1520-7439&rft.eissn=1573-8981&rft_id=info:doi/10.1007/s11053-019-09489-2&rft_dat=%3Cproquest_cross%3E2918321873%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918321873&rft_id=info:pmid/&rfr_iscdi=true |