Corrected L-type Method for Multi-singularity Problems Arising from Delay Fractional Equations
This paper is an extended work based on the literature [fitted L 1 method for delay fractional equations, (Cen and Vong in Comput Methods Appl Math, 2023)]. The highlight lies in the decomposition optimization of the solution for multi-singularity problems. Motivated by this idea, two corrected L -t...
Gespeichert in:
Veröffentlicht in: | Journal of scientific computing 2023-10, Vol.97 (1), p.15, Article 15 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 15 |
container_title | Journal of scientific computing |
container_volume | 97 |
creator | Cen, Dakang Ou, Caixia Vong, Seakweng |
description | This paper is an extended work based on the literature [fitted
L
1 method for delay fractional equations, (Cen and Vong in Comput Methods Appl Math, 2023)]. The highlight lies in the decomposition optimization of the solution for multi-singularity problems. Motivated by this idea, two corrected
L
-type schemes are constructed, of which optimal convergence order reaches
2
-
α
and 2, respectively, where
α
∈
(
0
,
1
)
is fractional order. Significantly, the correction terms share the same forms with the discrete convolution structure for the Caputo derivative, which implies that the computation and analysis of these two parts can be integrated together. |
doi_str_mv | 10.1007/s10915-023-02329-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918318116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918318116</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-850838d0f1ba7c0b9df4f4906911966e006cd64d47d7b0338c6279f6239814a83</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwApwscTas48Q_x6q0gNQKDnDFchK7pErr1nYOfXsSgsSNw2pXq5nR6EPolsI9BRAPkYKiBYGMDZMpos7QhBaCEcEVPUcTkLIgIhf5JbqKcQsASqpsgj7nPgRbJVvjFUmng8Vrm758jZ0PeN21qSGx2W-61oQmnfBb8GVrdxHPQjP8sQt-hx9ta054GUyVGr83LV4cOzOc8RpdONNGe_O7p-hjuXifP5PV69PLfLYiFaMqEVmAZLIGR0sjKihV7XKXK-i7U8W5BeBVzfM6F7UogTFZ8UwoxzOmJM2NZFN0N-Yegj92Nia99V3oq0SdKSoZlZTyXpWNqir4GIN1-hCanQknTUEPHPXIUfcM9Q9HrXoTG02xF-83NvxF_-P6Bv6OdTE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918318116</pqid></control><display><type>article</type><title>Corrected L-type Method for Multi-singularity Problems Arising from Delay Fractional Equations</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Cen, Dakang ; Ou, Caixia ; Vong, Seakweng</creator><creatorcontrib>Cen, Dakang ; Ou, Caixia ; Vong, Seakweng</creatorcontrib><description>This paper is an extended work based on the literature [fitted
L
1 method for delay fractional equations, (Cen and Vong in Comput Methods Appl Math, 2023)]. The highlight lies in the decomposition optimization of the solution for multi-singularity problems. Motivated by this idea, two corrected
L
-type schemes are constructed, of which optimal convergence order reaches
2
-
α
and 2, respectively, where
α
∈
(
0
,
1
)
is fractional order. Significantly, the correction terms share the same forms with the discrete convolution structure for the Caputo derivative, which implies that the computation and analysis of these two parts can be integrated together.</description><identifier>ISSN: 0885-7474</identifier><identifier>EISSN: 1573-7691</identifier><identifier>DOI: 10.1007/s10915-023-02329-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Computational Mathematics and Numerical Analysis ; Decomposition ; Fourier transforms ; Mathematical analysis ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Methods ; Numerical analysis ; Singularities ; Theoretical</subject><ispartof>Journal of scientific computing, 2023-10, Vol.97 (1), p.15, Article 15</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-850838d0f1ba7c0b9df4f4906911966e006cd64d47d7b0338c6279f6239814a83</citedby><cites>FETCH-LOGICAL-c319t-850838d0f1ba7c0b9df4f4906911966e006cd64d47d7b0338c6279f6239814a83</cites><orcidid>0000-0002-3017-3346</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10915-023-02329-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918318116?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Cen, Dakang</creatorcontrib><creatorcontrib>Ou, Caixia</creatorcontrib><creatorcontrib>Vong, Seakweng</creatorcontrib><title>Corrected L-type Method for Multi-singularity Problems Arising from Delay Fractional Equations</title><title>Journal of scientific computing</title><addtitle>J Sci Comput</addtitle><description>This paper is an extended work based on the literature [fitted
L
1 method for delay fractional equations, (Cen and Vong in Comput Methods Appl Math, 2023)]. The highlight lies in the decomposition optimization of the solution for multi-singularity problems. Motivated by this idea, two corrected
L
-type schemes are constructed, of which optimal convergence order reaches
2
-
α
and 2, respectively, where
α
∈
(
0
,
1
)
is fractional order. Significantly, the correction terms share the same forms with the discrete convolution structure for the Caputo derivative, which implies that the computation and analysis of these two parts can be integrated together.</description><subject>Algorithms</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Decomposition</subject><subject>Fourier transforms</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Methods</subject><subject>Numerical analysis</subject><subject>Singularities</subject><subject>Theoretical</subject><issn>0885-7474</issn><issn>1573-7691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kM1OwzAQhC0EEqXwApwscTas48Q_x6q0gNQKDnDFchK7pErr1nYOfXsSgsSNw2pXq5nR6EPolsI9BRAPkYKiBYGMDZMpos7QhBaCEcEVPUcTkLIgIhf5JbqKcQsASqpsgj7nPgRbJVvjFUmng8Vrm758jZ0PeN21qSGx2W-61oQmnfBb8GVrdxHPQjP8sQt-hx9ta054GUyVGr83LV4cOzOc8RpdONNGe_O7p-hjuXifP5PV69PLfLYiFaMqEVmAZLIGR0sjKihV7XKXK-i7U8W5BeBVzfM6F7UogTFZ8UwoxzOmJM2NZFN0N-Yegj92Nia99V3oq0SdKSoZlZTyXpWNqir4GIN1-hCanQknTUEPHPXIUfcM9Q9HrXoTG02xF-83NvxF_-P6Bv6OdTE</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Cen, Dakang</creator><creator>Ou, Caixia</creator><creator>Vong, Seakweng</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-3017-3346</orcidid></search><sort><creationdate>20231001</creationdate><title>Corrected L-type Method for Multi-singularity Problems Arising from Delay Fractional Equations</title><author>Cen, Dakang ; Ou, Caixia ; Vong, Seakweng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-850838d0f1ba7c0b9df4f4906911966e006cd64d47d7b0338c6279f6239814a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Decomposition</topic><topic>Fourier transforms</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Methods</topic><topic>Numerical analysis</topic><topic>Singularities</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cen, Dakang</creatorcontrib><creatorcontrib>Ou, Caixia</creatorcontrib><creatorcontrib>Vong, Seakweng</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cen, Dakang</au><au>Ou, Caixia</au><au>Vong, Seakweng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Corrected L-type Method for Multi-singularity Problems Arising from Delay Fractional Equations</atitle><jtitle>Journal of scientific computing</jtitle><stitle>J Sci Comput</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>97</volume><issue>1</issue><spage>15</spage><pages>15-</pages><artnum>15</artnum><issn>0885-7474</issn><eissn>1573-7691</eissn><abstract>This paper is an extended work based on the literature [fitted
L
1 method for delay fractional equations, (Cen and Vong in Comput Methods Appl Math, 2023)]. The highlight lies in the decomposition optimization of the solution for multi-singularity problems. Motivated by this idea, two corrected
L
-type schemes are constructed, of which optimal convergence order reaches
2
-
α
and 2, respectively, where
α
∈
(
0
,
1
)
is fractional order. Significantly, the correction terms share the same forms with the discrete convolution structure for the Caputo derivative, which implies that the computation and analysis of these two parts can be integrated together.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10915-023-02329-9</doi><orcidid>https://orcid.org/0000-0002-3017-3346</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-7474 |
ispartof | Journal of scientific computing, 2023-10, Vol.97 (1), p.15, Article 15 |
issn | 0885-7474 1573-7691 |
language | eng |
recordid | cdi_proquest_journals_2918318116 |
source | ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Algorithms Computational Mathematics and Numerical Analysis Decomposition Fourier transforms Mathematical analysis Mathematical and Computational Engineering Mathematical and Computational Physics Mathematics Mathematics and Statistics Methods Numerical analysis Singularities Theoretical |
title | Corrected L-type Method for Multi-singularity Problems Arising from Delay Fractional Equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T10%3A42%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Corrected%20L-type%20Method%20for%20Multi-singularity%20Problems%20Arising%20from%20Delay%20Fractional%20Equations&rft.jtitle=Journal%20of%20scientific%20computing&rft.au=Cen,%20Dakang&rft.date=2023-10-01&rft.volume=97&rft.issue=1&rft.spage=15&rft.pages=15-&rft.artnum=15&rft.issn=0885-7474&rft.eissn=1573-7691&rft_id=info:doi/10.1007/s10915-023-02329-9&rft_dat=%3Cproquest_cross%3E2918318116%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918318116&rft_id=info:pmid/&rfr_iscdi=true |