Function and Curl Recovery for the Lowest Order Triangular Edge Element
For the lowest order triangular edge element, function and curl recovery methods are proposed to recover the finite element approximation and its curl onto the space of piecewise continuous functions by least-squares fitting. A superconvergence analysis is carried out on the uniform triangular mesh....
Gespeichert in:
Veröffentlicht in: | Journal of scientific computing 2022-12, Vol.93 (3), p.69, Article 69 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 69 |
container_title | Journal of scientific computing |
container_volume | 93 |
creator | Wu, Chao Huang, Yunqing Yi, Nianyu Wei, Huayi Yuan, Jinyun |
description | For the lowest order triangular edge element, function and curl recovery methods are proposed to recover the finite element approximation and its curl onto the space of piecewise continuous functions by least-squares fitting. A superconvergence analysis is carried out on the uniform triangular mesh. Numerical experiments are provided to illustrate the superconvergence of the recovery methods and the performance of the corresponding recovery based a posteriori error estimators in adaptive computation. |
doi_str_mv | 10.1007/s10915-022-02027-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918316966</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918316966</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-19c121ebedf558f2d7a5065947c80b1c451a108662a50869fce8d76b8925922f3</originalsourceid><addsrcrecordid>eNp9kE9Lw0AQxRdRsFa_gKcFz6szm-y_o5S2CoWC1POSbja1JU3qbqLk27sawZuHYWB4783jR8gtwj0CqIeIYFAw4DwNcMWGMzJBoTKmpMFzMgGtBVO5yi_JVYwHADDa8AlZLvrGdfu2oUVT0lkfavriXfvhw0CrNtDuzdNV--ljR9eh9IFuwr5odn1dBDovd57Oa3_0TXdNLqqijv7md0_J62K-mT2x1Xr5PHtcMccVdAyNQ45-68tKCF3xUhUCpDC5chq26HKBBYKWkqe7lqZyXpdKblNXYTivsim5G3NPoX3vUy17aPvQpJeWG9QZSiNlUvFR5UIbY_CVPYX9sQiDRbDfwOwIzCZg9geYHZIpG00xiZudD3_R_7i-AKtHbQA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918316966</pqid></control><display><type>article</type><title>Function and Curl Recovery for the Lowest Order Triangular Edge Element</title><source>SpringerLink (Online service)</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Wu, Chao ; Huang, Yunqing ; Yi, Nianyu ; Wei, Huayi ; Yuan, Jinyun</creator><creatorcontrib>Wu, Chao ; Huang, Yunqing ; Yi, Nianyu ; Wei, Huayi ; Yuan, Jinyun</creatorcontrib><description>For the lowest order triangular edge element, function and curl recovery methods are proposed to recover the finite element approximation and its curl onto the space of piecewise continuous functions by least-squares fitting. A superconvergence analysis is carried out on the uniform triangular mesh. Numerical experiments are provided to illustrate the superconvergence of the recovery methods and the performance of the corresponding recovery based a posteriori error estimators in adaptive computation.</description><identifier>ISSN: 0885-7474</identifier><identifier>EISSN: 1573-7691</identifier><identifier>DOI: 10.1007/s10915-022-02027-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Approximation ; Computational Mathematics and Numerical Analysis ; Continuity (mathematics) ; Finite element analysis ; Mathematical analysis ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Recovery ; Theoretical</subject><ispartof>Journal of scientific computing, 2022-12, Vol.93 (3), p.69, Article 69</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-19c121ebedf558f2d7a5065947c80b1c451a108662a50869fce8d76b8925922f3</cites><orcidid>0000-0003-1447-1789</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10915-022-02027-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918316966?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Wu, Chao</creatorcontrib><creatorcontrib>Huang, Yunqing</creatorcontrib><creatorcontrib>Yi, Nianyu</creatorcontrib><creatorcontrib>Wei, Huayi</creatorcontrib><creatorcontrib>Yuan, Jinyun</creatorcontrib><title>Function and Curl Recovery for the Lowest Order Triangular Edge Element</title><title>Journal of scientific computing</title><addtitle>J Sci Comput</addtitle><description>For the lowest order triangular edge element, function and curl recovery methods are proposed to recover the finite element approximation and its curl onto the space of piecewise continuous functions by least-squares fitting. A superconvergence analysis is carried out on the uniform triangular mesh. Numerical experiments are provided to illustrate the superconvergence of the recovery methods and the performance of the corresponding recovery based a posteriori error estimators in adaptive computation.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Continuity (mathematics)</subject><subject>Finite element analysis</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Recovery</subject><subject>Theoretical</subject><issn>0885-7474</issn><issn>1573-7691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE9Lw0AQxRdRsFa_gKcFz6szm-y_o5S2CoWC1POSbja1JU3qbqLk27sawZuHYWB4783jR8gtwj0CqIeIYFAw4DwNcMWGMzJBoTKmpMFzMgGtBVO5yi_JVYwHADDa8AlZLvrGdfu2oUVT0lkfavriXfvhw0CrNtDuzdNV--ljR9eh9IFuwr5odn1dBDovd57Oa3_0TXdNLqqijv7md0_J62K-mT2x1Xr5PHtcMccVdAyNQ45-68tKCF3xUhUCpDC5chq26HKBBYKWkqe7lqZyXpdKblNXYTivsim5G3NPoX3vUy17aPvQpJeWG9QZSiNlUvFR5UIbY_CVPYX9sQiDRbDfwOwIzCZg9geYHZIpG00xiZudD3_R_7i-AKtHbQA</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Wu, Chao</creator><creator>Huang, Yunqing</creator><creator>Yi, Nianyu</creator><creator>Wei, Huayi</creator><creator>Yuan, Jinyun</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0003-1447-1789</orcidid></search><sort><creationdate>20221201</creationdate><title>Function and Curl Recovery for the Lowest Order Triangular Edge Element</title><author>Wu, Chao ; Huang, Yunqing ; Yi, Nianyu ; Wei, Huayi ; Yuan, Jinyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-19c121ebedf558f2d7a5065947c80b1c451a108662a50869fce8d76b8925922f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Continuity (mathematics)</topic><topic>Finite element analysis</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Recovery</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Chao</creatorcontrib><creatorcontrib>Huang, Yunqing</creatorcontrib><creatorcontrib>Yi, Nianyu</creatorcontrib><creatorcontrib>Wei, Huayi</creatorcontrib><creatorcontrib>Yuan, Jinyun</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Chao</au><au>Huang, Yunqing</au><au>Yi, Nianyu</au><au>Wei, Huayi</au><au>Yuan, Jinyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Function and Curl Recovery for the Lowest Order Triangular Edge Element</atitle><jtitle>Journal of scientific computing</jtitle><stitle>J Sci Comput</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>93</volume><issue>3</issue><spage>69</spage><pages>69-</pages><artnum>69</artnum><issn>0885-7474</issn><eissn>1573-7691</eissn><abstract>For the lowest order triangular edge element, function and curl recovery methods are proposed to recover the finite element approximation and its curl onto the space of piecewise continuous functions by least-squares fitting. A superconvergence analysis is carried out on the uniform triangular mesh. Numerical experiments are provided to illustrate the superconvergence of the recovery methods and the performance of the corresponding recovery based a posteriori error estimators in adaptive computation.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10915-022-02027-y</doi><orcidid>https://orcid.org/0000-0003-1447-1789</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-7474 |
ispartof | Journal of scientific computing, 2022-12, Vol.93 (3), p.69, Article 69 |
issn | 0885-7474 1573-7691 |
language | eng |
recordid | cdi_proquest_journals_2918316966 |
source | SpringerLink (Online service); ProQuest Central UK/Ireland; ProQuest Central |
subjects | Algorithms Approximation Computational Mathematics and Numerical Analysis Continuity (mathematics) Finite element analysis Mathematical analysis Mathematical and Computational Engineering Mathematical and Computational Physics Mathematics Mathematics and Statistics Recovery Theoretical |
title | Function and Curl Recovery for the Lowest Order Triangular Edge Element |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A37%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Function%20and%20Curl%20Recovery%20for%20the%20Lowest%20Order%20Triangular%20Edge%20Element&rft.jtitle=Journal%20of%20scientific%20computing&rft.au=Wu,%20Chao&rft.date=2022-12-01&rft.volume=93&rft.issue=3&rft.spage=69&rft.pages=69-&rft.artnum=69&rft.issn=0885-7474&rft.eissn=1573-7691&rft_id=info:doi/10.1007/s10915-022-02027-y&rft_dat=%3Cproquest_cross%3E2918316966%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918316966&rft_id=info:pmid/&rfr_iscdi=true |