High-Order CENO Finite-Volume Scheme with Anisotropic Adaptive Mesh Refinement: Efficient Inexact Newton Method for Steady Three-Dimensional Flows
A high-order finite-volume scheme with anisotropic adaptive mesh refinement (AMR) is combined with a parallel inexact Newton method for the solution of steady compressible fluid flows governed by the Euler and Navier–Stokes equations on three-dimensional multi-block body-fitted hexahedral meshes. Th...
Gespeichert in:
Veröffentlicht in: | Journal of scientific computing 2023-03, Vol.94 (3), p.48, Article 48 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 48 |
container_title | Journal of scientific computing |
container_volume | 94 |
creator | Freret, L. Ngigi, C. N. Nguyen, T. B. De Sterck, H. Groth, C. P. T. |
description | A high-order finite-volume scheme with anisotropic adaptive mesh refinement (AMR) is combined with a parallel inexact Newton method for the solution of steady compressible fluid flows governed by the Euler and Navier–Stokes equations on three-dimensional multi-block body-fitted hexahedral meshes. The proposed steady flow solution method combines a family of robust and accurate high-order central essentially non-oscillatory (CENO) spatial discretization schemes with both a scalable and efficient Newton–Krylov–Schwarz (NKS) algorithm and a block-based anisotropic AMR method. The CENO scheme is based on a hybrid solution reconstruction procedure that provides high-order accuracy in smooth regions (even for smooth extrema) and non-oscillatory transitions at discontinuities and makes use of a high-order representation of the mesh and a high-order treatment of boundary conditions. In the proposed Newton method, the resulting linear systems of equations are solved using the generalized minimal residual (GMRES) algorithm preconditioned by a domain-based additive Schwarz technique. The latter uses the domain decomposition provided by the block-based AMR scheme leading to a fully parallel implicit approach with an efficient scalability of the overall scheme. The anisotropic AMR method is based on a binary tree data structure and permits local anisotropic refinement of the grid in preferred directions as directed by appropriately specified physics-based refinement criteria. Numerical results are presented for a range of inviscid and viscous steady problems and the computational performance of the combined scheme is demonstrated and assessed. |
doi_str_mv | 10.1007/s10915-022-02068-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918316916</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918316916</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-d7ec4678417a944ba2b10913b0f1077df4e75e61164ca3eb553a44559ed44d713</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEuXxA6wssTbYsRMn7KrS0kqFShTYWk4yIUYlLrZL4Tf4YlyCxI7F6M7i3NHoIHTG6AWjVF56RguWEpokcWiWE76HBiyVnMisYPtoQPM8JVJIcYiOvH-hlBZ5kQzQ19Q8t2ThanB4NL5b4InpTADyZFebV8DLqoUYWxNaPOyMt8HZtanwsNbrYN4B34Jv8T00potcF67wuGlMZeKKZx186CrgO9gG20UytLbGjXV4GUDXn_ihdQDk2sSiN7bTKzxZ2a0_QQeNXnk4_c1j9DgZP4ymZL64mY2Gc1IlkgZSS6hEJnPBpC6EKHVS7iTwkjaMSlk3AmQKGWOZqDSHMk25FiJNC6iFqCXjx-i8v7t29m0DPqgXu3HxDa-SguWcRXNZpJKeqpz13kGj1s68avepGFU796p3r6J79eNe8VjifclHuHsG93f6n9Y389CHnw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918316916</pqid></control><display><type>article</type><title>High-Order CENO Finite-Volume Scheme with Anisotropic Adaptive Mesh Refinement: Efficient Inexact Newton Method for Steady Three-Dimensional Flows</title><source>SpringerNature Complete Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Freret, L. ; Ngigi, C. N. ; Nguyen, T. B. ; De Sterck, H. ; Groth, C. P. T.</creator><creatorcontrib>Freret, L. ; Ngigi, C. N. ; Nguyen, T. B. ; De Sterck, H. ; Groth, C. P. T.</creatorcontrib><description>A high-order finite-volume scheme with anisotropic adaptive mesh refinement (AMR) is combined with a parallel inexact Newton method for the solution of steady compressible fluid flows governed by the Euler and Navier–Stokes equations on three-dimensional multi-block body-fitted hexahedral meshes. The proposed steady flow solution method combines a family of robust and accurate high-order central essentially non-oscillatory (CENO) spatial discretization schemes with both a scalable and efficient Newton–Krylov–Schwarz (NKS) algorithm and a block-based anisotropic AMR method. The CENO scheme is based on a hybrid solution reconstruction procedure that provides high-order accuracy in smooth regions (even for smooth extrema) and non-oscillatory transitions at discontinuities and makes use of a high-order representation of the mesh and a high-order treatment of boundary conditions. In the proposed Newton method, the resulting linear systems of equations are solved using the generalized minimal residual (GMRES) algorithm preconditioned by a domain-based additive Schwarz technique. The latter uses the domain decomposition provided by the block-based AMR scheme leading to a fully parallel implicit approach with an efficient scalability of the overall scheme. The anisotropic AMR method is based on a binary tree data structure and permits local anisotropic refinement of the grid in preferred directions as directed by appropriately specified physics-based refinement criteria. Numerical results are presented for a range of inviscid and viscous steady problems and the computational performance of the combined scheme is demonstrated and assessed.</description><identifier>ISSN: 0885-7474</identifier><identifier>EISSN: 1573-7691</identifier><identifier>DOI: 10.1007/s10915-022-02068-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accuracy ; Algorithms ; Boundary conditions ; Compressible fluids ; Computational Mathematics and Numerical Analysis ; Data structures ; Domain decomposition methods ; Finite volume method ; Fluid flow ; Grid refinement (mathematics) ; Linear systems ; Mathematical analysis ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Newton methods ; Partial differential equations ; Robustness (mathematics) ; Steady flow ; Theoretical ; Three dimensional flow</subject><ispartof>Journal of scientific computing, 2023-03, Vol.94 (3), p.48, Article 48</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-d7ec4678417a944ba2b10913b0f1077df4e75e61164ca3eb553a44559ed44d713</cites><orcidid>0000-0002-8499-6962</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10915-022-02068-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918316916?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21386,27922,27923,33742,41486,42555,43803,51317,64383,64387,72239</link.rule.ids></links><search><creatorcontrib>Freret, L.</creatorcontrib><creatorcontrib>Ngigi, C. N.</creatorcontrib><creatorcontrib>Nguyen, T. B.</creatorcontrib><creatorcontrib>De Sterck, H.</creatorcontrib><creatorcontrib>Groth, C. P. T.</creatorcontrib><title>High-Order CENO Finite-Volume Scheme with Anisotropic Adaptive Mesh Refinement: Efficient Inexact Newton Method for Steady Three-Dimensional Flows</title><title>Journal of scientific computing</title><addtitle>J Sci Comput</addtitle><description>A high-order finite-volume scheme with anisotropic adaptive mesh refinement (AMR) is combined with a parallel inexact Newton method for the solution of steady compressible fluid flows governed by the Euler and Navier–Stokes equations on three-dimensional multi-block body-fitted hexahedral meshes. The proposed steady flow solution method combines a family of robust and accurate high-order central essentially non-oscillatory (CENO) spatial discretization schemes with both a scalable and efficient Newton–Krylov–Schwarz (NKS) algorithm and a block-based anisotropic AMR method. The CENO scheme is based on a hybrid solution reconstruction procedure that provides high-order accuracy in smooth regions (even for smooth extrema) and non-oscillatory transitions at discontinuities and makes use of a high-order representation of the mesh and a high-order treatment of boundary conditions. In the proposed Newton method, the resulting linear systems of equations are solved using the generalized minimal residual (GMRES) algorithm preconditioned by a domain-based additive Schwarz technique. The latter uses the domain decomposition provided by the block-based AMR scheme leading to a fully parallel implicit approach with an efficient scalability of the overall scheme. The anisotropic AMR method is based on a binary tree data structure and permits local anisotropic refinement of the grid in preferred directions as directed by appropriately specified physics-based refinement criteria. Numerical results are presented for a range of inviscid and viscous steady problems and the computational performance of the combined scheme is demonstrated and assessed.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Boundary conditions</subject><subject>Compressible fluids</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Data structures</subject><subject>Domain decomposition methods</subject><subject>Finite volume method</subject><subject>Fluid flow</subject><subject>Grid refinement (mathematics)</subject><subject>Linear systems</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Newton methods</subject><subject>Partial differential equations</subject><subject>Robustness (mathematics)</subject><subject>Steady flow</subject><subject>Theoretical</subject><subject>Three dimensional flow</subject><issn>0885-7474</issn><issn>1573-7691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMtOwzAQRS0EEuXxA6wssTbYsRMn7KrS0kqFShTYWk4yIUYlLrZL4Tf4YlyCxI7F6M7i3NHoIHTG6AWjVF56RguWEpokcWiWE76HBiyVnMisYPtoQPM8JVJIcYiOvH-hlBZ5kQzQ19Q8t2ThanB4NL5b4InpTADyZFebV8DLqoUYWxNaPOyMt8HZtanwsNbrYN4B34Jv8T00potcF67wuGlMZeKKZx186CrgO9gG20UytLbGjXV4GUDXn_ihdQDk2sSiN7bTKzxZ2a0_QQeNXnk4_c1j9DgZP4ymZL64mY2Gc1IlkgZSS6hEJnPBpC6EKHVS7iTwkjaMSlk3AmQKGWOZqDSHMk25FiJNC6iFqCXjx-i8v7t29m0DPqgXu3HxDa-SguWcRXNZpJKeqpz13kGj1s68avepGFU796p3r6J79eNe8VjifclHuHsG93f6n9Y389CHnw</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Freret, L.</creator><creator>Ngigi, C. N.</creator><creator>Nguyen, T. B.</creator><creator>De Sterck, H.</creator><creator>Groth, C. P. T.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-8499-6962</orcidid></search><sort><creationdate>20230301</creationdate><title>High-Order CENO Finite-Volume Scheme with Anisotropic Adaptive Mesh Refinement: Efficient Inexact Newton Method for Steady Three-Dimensional Flows</title><author>Freret, L. ; Ngigi, C. N. ; Nguyen, T. B. ; De Sterck, H. ; Groth, C. P. T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-d7ec4678417a944ba2b10913b0f1077df4e75e61164ca3eb553a44559ed44d713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Boundary conditions</topic><topic>Compressible fluids</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Data structures</topic><topic>Domain decomposition methods</topic><topic>Finite volume method</topic><topic>Fluid flow</topic><topic>Grid refinement (mathematics)</topic><topic>Linear systems</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Newton methods</topic><topic>Partial differential equations</topic><topic>Robustness (mathematics)</topic><topic>Steady flow</topic><topic>Theoretical</topic><topic>Three dimensional flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Freret, L.</creatorcontrib><creatorcontrib>Ngigi, C. N.</creatorcontrib><creatorcontrib>Nguyen, T. B.</creatorcontrib><creatorcontrib>De Sterck, H.</creatorcontrib><creatorcontrib>Groth, C. P. T.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Freret, L.</au><au>Ngigi, C. N.</au><au>Nguyen, T. B.</au><au>De Sterck, H.</au><au>Groth, C. P. T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Order CENO Finite-Volume Scheme with Anisotropic Adaptive Mesh Refinement: Efficient Inexact Newton Method for Steady Three-Dimensional Flows</atitle><jtitle>Journal of scientific computing</jtitle><stitle>J Sci Comput</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>94</volume><issue>3</issue><spage>48</spage><pages>48-</pages><artnum>48</artnum><issn>0885-7474</issn><eissn>1573-7691</eissn><abstract>A high-order finite-volume scheme with anisotropic adaptive mesh refinement (AMR) is combined with a parallel inexact Newton method for the solution of steady compressible fluid flows governed by the Euler and Navier–Stokes equations on three-dimensional multi-block body-fitted hexahedral meshes. The proposed steady flow solution method combines a family of robust and accurate high-order central essentially non-oscillatory (CENO) spatial discretization schemes with both a scalable and efficient Newton–Krylov–Schwarz (NKS) algorithm and a block-based anisotropic AMR method. The CENO scheme is based on a hybrid solution reconstruction procedure that provides high-order accuracy in smooth regions (even for smooth extrema) and non-oscillatory transitions at discontinuities and makes use of a high-order representation of the mesh and a high-order treatment of boundary conditions. In the proposed Newton method, the resulting linear systems of equations are solved using the generalized minimal residual (GMRES) algorithm preconditioned by a domain-based additive Schwarz technique. The latter uses the domain decomposition provided by the block-based AMR scheme leading to a fully parallel implicit approach with an efficient scalability of the overall scheme. The anisotropic AMR method is based on a binary tree data structure and permits local anisotropic refinement of the grid in preferred directions as directed by appropriately specified physics-based refinement criteria. Numerical results are presented for a range of inviscid and viscous steady problems and the computational performance of the combined scheme is demonstrated and assessed.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10915-022-02068-3</doi><orcidid>https://orcid.org/0000-0002-8499-6962</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-7474 |
ispartof | Journal of scientific computing, 2023-03, Vol.94 (3), p.48, Article 48 |
issn | 0885-7474 1573-7691 |
language | eng |
recordid | cdi_proquest_journals_2918316916 |
source | SpringerNature Complete Journals; ProQuest Central UK/Ireland; ProQuest Central |
subjects | Accuracy Algorithms Boundary conditions Compressible fluids Computational Mathematics and Numerical Analysis Data structures Domain decomposition methods Finite volume method Fluid flow Grid refinement (mathematics) Linear systems Mathematical analysis Mathematical and Computational Engineering Mathematical and Computational Physics Mathematics Mathematics and Statistics Newton methods Partial differential equations Robustness (mathematics) Steady flow Theoretical Three dimensional flow |
title | High-Order CENO Finite-Volume Scheme with Anisotropic Adaptive Mesh Refinement: Efficient Inexact Newton Method for Steady Three-Dimensional Flows |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T08%3A56%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Order%20CENO%20Finite-Volume%20Scheme%20with%20Anisotropic%20Adaptive%20Mesh%20Refinement:%20Efficient%20Inexact%20Newton%20Method%20for%20Steady%20Three-Dimensional%20Flows&rft.jtitle=Journal%20of%20scientific%20computing&rft.au=Freret,%20L.&rft.date=2023-03-01&rft.volume=94&rft.issue=3&rft.spage=48&rft.pages=48-&rft.artnum=48&rft.issn=0885-7474&rft.eissn=1573-7691&rft_id=info:doi/10.1007/s10915-022-02068-3&rft_dat=%3Cproquest_cross%3E2918316916%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918316916&rft_id=info:pmid/&rfr_iscdi=true |