A Mass-Preserving Two-Step Lagrange–Galerkin Scheme for Convection-Diffusion Problems

A mass-preserving two-step Lagrange–Galerkin scheme of second order in time for convection-diffusion problems is presented, and convergence with optimal error estimates is proved in the framework of L 2 -theory. The introduced scheme maintains the advantages of the Lagrange–Galerkin method, i.e., CF...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of scientific computing 2022-08, Vol.92 (2), p.37, Article 37
Hauptverfasser: Futai, Kouta, Kolbe, Niklas, Notsu, Hirofumi, Suzuki, Tasuku
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 37
container_title Journal of scientific computing
container_volume 92
creator Futai, Kouta
Kolbe, Niklas
Notsu, Hirofumi
Suzuki, Tasuku
description A mass-preserving two-step Lagrange–Galerkin scheme of second order in time for convection-diffusion problems is presented, and convergence with optimal error estimates is proved in the framework of L 2 -theory. The introduced scheme maintains the advantages of the Lagrange–Galerkin method, i.e., CFL-free robustness for convection-dominated problems and a symmetric and positive coefficient matrix resulting from the discretization. In addition, the scheme conserves the mass on the discrete level if the involved integrals are computed exactly. Unconditional stability and error estimates of second order in time are proved by employing two new key lemmas on the truncation error of the material derivative in conservative form and on a discrete Gronwall inequality for multistep methods. The mass-preserving property is achieved by the Jacobian multiplication technique introduced by Rui and Tabata in 2010, and the accuracy of second order in time is obtained based on the idea of the multistep Galerkin method along characteristics originally introduced by Ewing and Russel in 1981. For the first time step, the mass-preserving scheme of first order in time by Rui and Tabata in 2010 is employed, which is efficient and does not cause any loss of convergence order in the ℓ ∞ ( L 2 ) - and ℓ 2 ( H 0 1 ) -norms. For the time increment  Δ t , the mesh size  h and a conforming finite element space of polynomial degree  k ∈ N , the convergence order is of O ( Δ t 2 + h k ) in the ℓ ∞ ( L 2 ) ∩ ℓ 2 ( H 0 1 ) -norm and of O ( Δ t 2 + h k + 1 ) in the ℓ ∞ ( L 2 ) -norm if the duality argument can be employed. Error estimates of O ( Δ t 3 / 2 + h k ) in discrete versions of the L ∞ ( H 0 1 ) - and H 1 ( L 2 ) -norm are additionally proved. Numerical results confirm the theoretical convergence orders in one, two and three dimensions.
doi_str_mv 10.1007/s10915-022-01885-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918315873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918315873</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-ab5fb310e343cad7fc5e1c8afcd6ee26a4d8ce9bcffe559d6248ede141c25a343</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWKsv4GnBczTJbnaTY6lahYqFVjyGbHZSt7abmmxbvPkOvqFPYuoK3jzNMPzfP_AhdE7JJSWkuAqUSMoxYQwTKgTHuwPUo7xIcZFLeoh6ZH8ssiI7RichLAghUkjWQ8-D5EGHgCceAvht3cyT2c7haQvrZKznXjdz-Pr4HOkl-Ne6SabmBVaQWOeToWu2YNraNfi6tnYT4pZMvCuXsAqn6MjqZYCz39lHT7c3s-EdHj-O7oeDMTYZky3WJbdlSgmkWWp0VVjDgRqhralyAJbrrBIGZGmsBc5llbNMQAU0o4ZxHaE-uuh61969bSC0auE2vokvFZNUpJSLIo0p1qWMdyF4sGrt65X274oStReoOoEqClQ_AtUuQmkHhRiOGvxf9T_UNypfdqk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918315873</pqid></control><display><type>article</type><title>A Mass-Preserving Two-Step Lagrange–Galerkin Scheme for Convection-Diffusion Problems</title><source>SpringerNature Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Futai, Kouta ; Kolbe, Niklas ; Notsu, Hirofumi ; Suzuki, Tasuku</creator><creatorcontrib>Futai, Kouta ; Kolbe, Niklas ; Notsu, Hirofumi ; Suzuki, Tasuku</creatorcontrib><description>A mass-preserving two-step Lagrange–Galerkin scheme of second order in time for convection-diffusion problems is presented, and convergence with optimal error estimates is proved in the framework of L 2 -theory. The introduced scheme maintains the advantages of the Lagrange–Galerkin method, i.e., CFL-free robustness for convection-dominated problems and a symmetric and positive coefficient matrix resulting from the discretization. In addition, the scheme conserves the mass on the discrete level if the involved integrals are computed exactly. Unconditional stability and error estimates of second order in time are proved by employing two new key lemmas on the truncation error of the material derivative in conservative form and on a discrete Gronwall inequality for multistep methods. The mass-preserving property is achieved by the Jacobian multiplication technique introduced by Rui and Tabata in 2010, and the accuracy of second order in time is obtained based on the idea of the multistep Galerkin method along characteristics originally introduced by Ewing and Russel in 1981. For the first time step, the mass-preserving scheme of first order in time by Rui and Tabata in 2010 is employed, which is efficient and does not cause any loss of convergence order in the ℓ ∞ ( L 2 ) - and ℓ 2 ( H 0 1 ) -norms. For the time increment  Δ t , the mesh size  h and a conforming finite element space of polynomial degree  k ∈ N , the convergence order is of O ( Δ t 2 + h k ) in the ℓ ∞ ( L 2 ) ∩ ℓ 2 ( H 0 1 ) -norm and of O ( Δ t 2 + h k + 1 ) in the ℓ ∞ ( L 2 ) -norm if the duality argument can be employed. Error estimates of O ( Δ t 3 / 2 + h k ) in discrete versions of the L ∞ ( H 0 1 ) - and H 1 ( L 2 ) -norm are additionally proved. Numerical results confirm the theoretical convergence orders in one, two and three dimensions.</description><identifier>ISSN: 0885-7474</identifier><identifier>EISSN: 1573-7691</identifier><identifier>DOI: 10.1007/s10915-022-01885-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Computational Mathematics and Numerical Analysis ; Convection-diffusion equation ; Convergence ; Estimates ; Finite element analysis ; Galerkin method ; Mathematical analysis ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Methods ; Multiplication ; Polynomials ; Robustness (mathematics) ; Theoretical ; Truncation errors ; Viscosity</subject><ispartof>Journal of scientific computing, 2022-08, Vol.92 (2), p.37, Article 37</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-ab5fb310e343cad7fc5e1c8afcd6ee26a4d8ce9bcffe559d6248ede141c25a343</citedby><cites>FETCH-LOGICAL-c429t-ab5fb310e343cad7fc5e1c8afcd6ee26a4d8ce9bcffe559d6248ede141c25a343</cites><orcidid>0000-0003-0319-8748</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10915-022-01885-w$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918315873?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Futai, Kouta</creatorcontrib><creatorcontrib>Kolbe, Niklas</creatorcontrib><creatorcontrib>Notsu, Hirofumi</creatorcontrib><creatorcontrib>Suzuki, Tasuku</creatorcontrib><title>A Mass-Preserving Two-Step Lagrange–Galerkin Scheme for Convection-Diffusion Problems</title><title>Journal of scientific computing</title><addtitle>J Sci Comput</addtitle><description>A mass-preserving two-step Lagrange–Galerkin scheme of second order in time for convection-diffusion problems is presented, and convergence with optimal error estimates is proved in the framework of L 2 -theory. The introduced scheme maintains the advantages of the Lagrange–Galerkin method, i.e., CFL-free robustness for convection-dominated problems and a symmetric and positive coefficient matrix resulting from the discretization. In addition, the scheme conserves the mass on the discrete level if the involved integrals are computed exactly. Unconditional stability and error estimates of second order in time are proved by employing two new key lemmas on the truncation error of the material derivative in conservative form and on a discrete Gronwall inequality for multistep methods. The mass-preserving property is achieved by the Jacobian multiplication technique introduced by Rui and Tabata in 2010, and the accuracy of second order in time is obtained based on the idea of the multistep Galerkin method along characteristics originally introduced by Ewing and Russel in 1981. For the first time step, the mass-preserving scheme of first order in time by Rui and Tabata in 2010 is employed, which is efficient and does not cause any loss of convergence order in the ℓ ∞ ( L 2 ) - and ℓ 2 ( H 0 1 ) -norms. For the time increment  Δ t , the mesh size  h and a conforming finite element space of polynomial degree  k ∈ N , the convergence order is of O ( Δ t 2 + h k ) in the ℓ ∞ ( L 2 ) ∩ ℓ 2 ( H 0 1 ) -norm and of O ( Δ t 2 + h k + 1 ) in the ℓ ∞ ( L 2 ) -norm if the duality argument can be employed. Error estimates of O ( Δ t 3 / 2 + h k ) in discrete versions of the L ∞ ( H 0 1 ) - and H 1 ( L 2 ) -norm are additionally proved. Numerical results confirm the theoretical convergence orders in one, two and three dimensions.</description><subject>Algorithms</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Convection-diffusion equation</subject><subject>Convergence</subject><subject>Estimates</subject><subject>Finite element analysis</subject><subject>Galerkin method</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Methods</subject><subject>Multiplication</subject><subject>Polynomials</subject><subject>Robustness (mathematics)</subject><subject>Theoretical</subject><subject>Truncation errors</subject><subject>Viscosity</subject><issn>0885-7474</issn><issn>1573-7691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMFKAzEQhoMoWKsv4GnBczTJbnaTY6lahYqFVjyGbHZSt7abmmxbvPkOvqFPYuoK3jzNMPzfP_AhdE7JJSWkuAqUSMoxYQwTKgTHuwPUo7xIcZFLeoh6ZH8ssiI7RichLAghUkjWQ8-D5EGHgCceAvht3cyT2c7haQvrZKznXjdz-Pr4HOkl-Ne6SabmBVaQWOeToWu2YNraNfi6tnYT4pZMvCuXsAqn6MjqZYCz39lHT7c3s-EdHj-O7oeDMTYZky3WJbdlSgmkWWp0VVjDgRqhralyAJbrrBIGZGmsBc5llbNMQAU0o4ZxHaE-uuh61969bSC0auE2vokvFZNUpJSLIo0p1qWMdyF4sGrt65X274oStReoOoEqClQ_AtUuQmkHhRiOGvxf9T_UNypfdqk</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Futai, Kouta</creator><creator>Kolbe, Niklas</creator><creator>Notsu, Hirofumi</creator><creator>Suzuki, Tasuku</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-0319-8748</orcidid></search><sort><creationdate>20220801</creationdate><title>A Mass-Preserving Two-Step Lagrange–Galerkin Scheme for Convection-Diffusion Problems</title><author>Futai, Kouta ; Kolbe, Niklas ; Notsu, Hirofumi ; Suzuki, Tasuku</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-ab5fb310e343cad7fc5e1c8afcd6ee26a4d8ce9bcffe559d6248ede141c25a343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Convection-diffusion equation</topic><topic>Convergence</topic><topic>Estimates</topic><topic>Finite element analysis</topic><topic>Galerkin method</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Methods</topic><topic>Multiplication</topic><topic>Polynomials</topic><topic>Robustness (mathematics)</topic><topic>Theoretical</topic><topic>Truncation errors</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Futai, Kouta</creatorcontrib><creatorcontrib>Kolbe, Niklas</creatorcontrib><creatorcontrib>Notsu, Hirofumi</creatorcontrib><creatorcontrib>Suzuki, Tasuku</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Futai, Kouta</au><au>Kolbe, Niklas</au><au>Notsu, Hirofumi</au><au>Suzuki, Tasuku</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Mass-Preserving Two-Step Lagrange–Galerkin Scheme for Convection-Diffusion Problems</atitle><jtitle>Journal of scientific computing</jtitle><stitle>J Sci Comput</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>92</volume><issue>2</issue><spage>37</spage><pages>37-</pages><artnum>37</artnum><issn>0885-7474</issn><eissn>1573-7691</eissn><abstract>A mass-preserving two-step Lagrange–Galerkin scheme of second order in time for convection-diffusion problems is presented, and convergence with optimal error estimates is proved in the framework of L 2 -theory. The introduced scheme maintains the advantages of the Lagrange–Galerkin method, i.e., CFL-free robustness for convection-dominated problems and a symmetric and positive coefficient matrix resulting from the discretization. In addition, the scheme conserves the mass on the discrete level if the involved integrals are computed exactly. Unconditional stability and error estimates of second order in time are proved by employing two new key lemmas on the truncation error of the material derivative in conservative form and on a discrete Gronwall inequality for multistep methods. The mass-preserving property is achieved by the Jacobian multiplication technique introduced by Rui and Tabata in 2010, and the accuracy of second order in time is obtained based on the idea of the multistep Galerkin method along characteristics originally introduced by Ewing and Russel in 1981. For the first time step, the mass-preserving scheme of first order in time by Rui and Tabata in 2010 is employed, which is efficient and does not cause any loss of convergence order in the ℓ ∞ ( L 2 ) - and ℓ 2 ( H 0 1 ) -norms. For the time increment  Δ t , the mesh size  h and a conforming finite element space of polynomial degree  k ∈ N , the convergence order is of O ( Δ t 2 + h k ) in the ℓ ∞ ( L 2 ) ∩ ℓ 2 ( H 0 1 ) -norm and of O ( Δ t 2 + h k + 1 ) in the ℓ ∞ ( L 2 ) -norm if the duality argument can be employed. Error estimates of O ( Δ t 3 / 2 + h k ) in discrete versions of the L ∞ ( H 0 1 ) - and H 1 ( L 2 ) -norm are additionally proved. Numerical results confirm the theoretical convergence orders in one, two and three dimensions.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10915-022-01885-w</doi><orcidid>https://orcid.org/0000-0003-0319-8748</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0885-7474
ispartof Journal of scientific computing, 2022-08, Vol.92 (2), p.37, Article 37
issn 0885-7474
1573-7691
language eng
recordid cdi_proquest_journals_2918315873
source SpringerNature Journals; ProQuest Central UK/Ireland; ProQuest Central
subjects Algorithms
Computational Mathematics and Numerical Analysis
Convection-diffusion equation
Convergence
Estimates
Finite element analysis
Galerkin method
Mathematical analysis
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Methods
Multiplication
Polynomials
Robustness (mathematics)
Theoretical
Truncation errors
Viscosity
title A Mass-Preserving Two-Step Lagrange–Galerkin Scheme for Convection-Diffusion Problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A42%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Mass-Preserving%20Two-Step%20Lagrange%E2%80%93Galerkin%20Scheme%20for%20Convection-Diffusion%20Problems&rft.jtitle=Journal%20of%20scientific%20computing&rft.au=Futai,%20Kouta&rft.date=2022-08-01&rft.volume=92&rft.issue=2&rft.spage=37&rft.pages=37-&rft.artnum=37&rft.issn=0885-7474&rft.eissn=1573-7691&rft_id=info:doi/10.1007/s10915-022-01885-w&rft_dat=%3Cproquest_cross%3E2918315873%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918315873&rft_id=info:pmid/&rfr_iscdi=true