A Viscosity-Independent Error Estimate of a Pressure-Stabilized Lagrange–Galerkin Scheme for the Oseen Problem

We consider a pressure-stabilized Lagrange–Galerkin scheme for the transient Oseen problem with small viscosity. In the scheme we use the equal-order approximation of order k for both the velocity and pressure, and add a symmetric pressure stabilization term. We show an error estimate for the veloci...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of scientific computing 2019-08, Vol.80 (2), p.834-858
1. Verfasser: Uchiumi, Shinya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 858
container_issue 2
container_start_page 834
container_title Journal of scientific computing
container_volume 80
creator Uchiumi, Shinya
description We consider a pressure-stabilized Lagrange–Galerkin scheme for the transient Oseen problem with small viscosity. In the scheme we use the equal-order approximation of order k for both the velocity and pressure, and add a symmetric pressure stabilization term. We show an error estimate for the velocity with a constant independent of the viscosity if the exact solution is sufficiently smooth. We also show an error estimate of a discrete primitive of the pressure. Numerical examples show high accuracy of the scheme for problems with small viscosity.
doi_str_mv 10.1007/s10915-019-00958-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918315456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918315456</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-e2a77d96ccffd563a15465eac6fdb2e6673a7461e7ad6162e0dc40e41f45c81e3</originalsourceid><addsrcrecordid>eNp9kLFOwzAQhi0EEqXwAkyWmA12EtvJWFWlrVSpSAVWy3XObUqaBNsdysQ78IY8CYYgsbHcLf_3ne5H6JrRW0apvPOMFowTygpCacFzIk_QgHGZEikKdooGNM85kZnMztGF9zsaU3mRDFA3ws-VN62vwpHMmxI6iKMJeOJc6_DEh2qvA-DWYo0fHHh_cEBWQa-runqDEi_0xulmA5_vH1Ndg3upGrwyW9gDtlEQtoCXHqCJcLuuYX-JzqyuPVz97iF6up88jmdksZzOx6MFMWnOA4FES1kWwhhrSy5SzXgmOGgjbLlOQAiZapkJBlKXgokEaGkyChmzGTc5g3SIbnpv59rXA_igdu3BNfGkSgqWp9EXtUOU9CnjWu8dWNW5-LA7KkbVd7Oqb1bFZtVPs0pGKO0hH8Pxdfen_of6Ask2fgI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918315456</pqid></control><display><type>article</type><title>A Viscosity-Independent Error Estimate of a Pressure-Stabilized Lagrange–Galerkin Scheme for the Oseen Problem</title><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Uchiumi, Shinya</creator><creatorcontrib>Uchiumi, Shinya</creatorcontrib><description>We consider a pressure-stabilized Lagrange–Galerkin scheme for the transient Oseen problem with small viscosity. In the scheme we use the equal-order approximation of order k for both the velocity and pressure, and add a symmetric pressure stabilization term. We show an error estimate for the velocity with a constant independent of the viscosity if the exact solution is sufficiently smooth. We also show an error estimate of a discrete primitive of the pressure. Numerical examples show high accuracy of the scheme for problems with small viscosity.</description><identifier>ISSN: 0885-7474</identifier><identifier>EISSN: 1573-7691</identifier><identifier>DOI: 10.1007/s10915-019-00958-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Approximation ; Computational Mathematics and Numerical Analysis ; Errors ; Exact solutions ; Finite element analysis ; Galerkin method ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Ordinary differential equations ; Theoretical ; Velocity ; Viscosity</subject><ispartof>Journal of scientific computing, 2019-08, Vol.80 (2), p.834-858</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-e2a77d96ccffd563a15465eac6fdb2e6673a7461e7ad6162e0dc40e41f45c81e3</citedby><cites>FETCH-LOGICAL-c385t-e2a77d96ccffd563a15465eac6fdb2e6673a7461e7ad6162e0dc40e41f45c81e3</cites><orcidid>0000-0003-1042-0001</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10915-019-00958-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918315456?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Uchiumi, Shinya</creatorcontrib><title>A Viscosity-Independent Error Estimate of a Pressure-Stabilized Lagrange–Galerkin Scheme for the Oseen Problem</title><title>Journal of scientific computing</title><addtitle>J Sci Comput</addtitle><description>We consider a pressure-stabilized Lagrange–Galerkin scheme for the transient Oseen problem with small viscosity. In the scheme we use the equal-order approximation of order k for both the velocity and pressure, and add a symmetric pressure stabilization term. We show an error estimate for the velocity with a constant independent of the viscosity if the exact solution is sufficiently smooth. We also show an error estimate of a discrete primitive of the pressure. Numerical examples show high accuracy of the scheme for problems with small viscosity.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Errors</subject><subject>Exact solutions</subject><subject>Finite element analysis</subject><subject>Galerkin method</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Ordinary differential equations</subject><subject>Theoretical</subject><subject>Velocity</subject><subject>Viscosity</subject><issn>0885-7474</issn><issn>1573-7691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kLFOwzAQhi0EEqXwAkyWmA12EtvJWFWlrVSpSAVWy3XObUqaBNsdysQ78IY8CYYgsbHcLf_3ne5H6JrRW0apvPOMFowTygpCacFzIk_QgHGZEikKdooGNM85kZnMztGF9zsaU3mRDFA3ws-VN62vwpHMmxI6iKMJeOJc6_DEh2qvA-DWYo0fHHh_cEBWQa-runqDEi_0xulmA5_vH1Ndg3upGrwyW9gDtlEQtoCXHqCJcLuuYX-JzqyuPVz97iF6up88jmdksZzOx6MFMWnOA4FES1kWwhhrSy5SzXgmOGgjbLlOQAiZapkJBlKXgokEaGkyChmzGTc5g3SIbnpv59rXA_igdu3BNfGkSgqWp9EXtUOU9CnjWu8dWNW5-LA7KkbVd7Oqb1bFZtVPs0pGKO0hH8Pxdfen_of6Ask2fgI</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Uchiumi, Shinya</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-1042-0001</orcidid></search><sort><creationdate>20190801</creationdate><title>A Viscosity-Independent Error Estimate of a Pressure-Stabilized Lagrange–Galerkin Scheme for the Oseen Problem</title><author>Uchiumi, Shinya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-e2a77d96ccffd563a15465eac6fdb2e6673a7461e7ad6162e0dc40e41f45c81e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Errors</topic><topic>Exact solutions</topic><topic>Finite element analysis</topic><topic>Galerkin method</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Ordinary differential equations</topic><topic>Theoretical</topic><topic>Velocity</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Uchiumi, Shinya</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Uchiumi, Shinya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Viscosity-Independent Error Estimate of a Pressure-Stabilized Lagrange–Galerkin Scheme for the Oseen Problem</atitle><jtitle>Journal of scientific computing</jtitle><stitle>J Sci Comput</stitle><date>2019-08-01</date><risdate>2019</risdate><volume>80</volume><issue>2</issue><spage>834</spage><epage>858</epage><pages>834-858</pages><issn>0885-7474</issn><eissn>1573-7691</eissn><abstract>We consider a pressure-stabilized Lagrange–Galerkin scheme for the transient Oseen problem with small viscosity. In the scheme we use the equal-order approximation of order k for both the velocity and pressure, and add a symmetric pressure stabilization term. We show an error estimate for the velocity with a constant independent of the viscosity if the exact solution is sufficiently smooth. We also show an error estimate of a discrete primitive of the pressure. Numerical examples show high accuracy of the scheme for problems with small viscosity.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10915-019-00958-7</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0003-1042-0001</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0885-7474
ispartof Journal of scientific computing, 2019-08, Vol.80 (2), p.834-858
issn 0885-7474
1573-7691
language eng
recordid cdi_proquest_journals_2918315456
source SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Algorithms
Approximation
Computational Mathematics and Numerical Analysis
Errors
Exact solutions
Finite element analysis
Galerkin method
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Ordinary differential equations
Theoretical
Velocity
Viscosity
title A Viscosity-Independent Error Estimate of a Pressure-Stabilized Lagrange–Galerkin Scheme for the Oseen Problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T21%3A06%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Viscosity-Independent%20Error%20Estimate%20of%20a%20Pressure-Stabilized%20Lagrange%E2%80%93Galerkin%20Scheme%20for%20the%20Oseen%20Problem&rft.jtitle=Journal%20of%20scientific%20computing&rft.au=Uchiumi,%20Shinya&rft.date=2019-08-01&rft.volume=80&rft.issue=2&rft.spage=834&rft.epage=858&rft.pages=834-858&rft.issn=0885-7474&rft.eissn=1573-7691&rft_id=info:doi/10.1007/s10915-019-00958-7&rft_dat=%3Cproquest_cross%3E2918315456%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918315456&rft_id=info:pmid/&rfr_iscdi=true