A Linear Implicit Finite Difference Discretization of the Schrödinger–Hirota Equation

A new linear implicit finite difference method is proposed for the approximation of the solution to a periodic, initial value problem for a Schrödinger–Hirota equation. Optimal, second order convergence in the discrete H 1 -norm is proved, assuming that τ , h and τ 4 h are sufficiently small, where...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of scientific computing 2018-10, Vol.77 (1), p.634-656
1. Verfasser: Zouraris, Georgios E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 656
container_issue 1
container_start_page 634
container_title Journal of scientific computing
container_volume 77
creator Zouraris, Georgios E.
description A new linear implicit finite difference method is proposed for the approximation of the solution to a periodic, initial value problem for a Schrödinger–Hirota equation. Optimal, second order convergence in the discrete H 1 -norm is proved, assuming that τ , h and τ 4 h are sufficiently small, where τ is the time-step and h is the space mesh-size. The convergence analysis is based on the investigation of a modified version of the proposed finite difference method, which is innovative and handles the stability difficulties due to the presence of a nonlinear derivative term in the equation. The efficiency of the proposed finite difference method is verified by results from numerical experiments.
doi_str_mv 10.1007/s10915-018-0718-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918315149</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918315149</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-4afc033dd5bb7a356ae31be2743dcb1e3a361dd4b8e7ae36692f6b7c667061403</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhS0EEqVwAHaWWBs8cWIny6r0T6rEApDYWY5jU1dt0truAlbcgbtwAW7CSUgIEis2MyPNe280H0KXQK-BUnETgBaQEQo5oaIt_AgNIBOMCF7AMRrQPM-ISEV6is5CWFNKi7xIBuhphJeuNsrjxXa3cdpFPHW1iwbfOmuNN7XuxqC9ie5VRdfUuLE4rgy-1yv_-VG5-tn4r7f3ufNNVHiyP_yoztGJVZtgLn77ED1OJw_jOVnezRbj0ZJoBjySVFlNGauqrCyFYhlXhkFpEpGySpdgmGIcqiotcyPaFedFYnkpNOeCckgpG6KrPnfnm_3BhCjXzcHX7UmZFJAzyCAtWhX0Ku2bELyxcufdVvkXCVR2AGUPULYAZQdQ8taT9J7Qarsn_5L_N30D3X11Fw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918315149</pqid></control><display><type>article</type><title>A Linear Implicit Finite Difference Discretization of the Schrödinger–Hirota Equation</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Zouraris, Georgios E.</creator><creatorcontrib>Zouraris, Georgios E.</creatorcontrib><description>A new linear implicit finite difference method is proposed for the approximation of the solution to a periodic, initial value problem for a Schrödinger–Hirota equation. Optimal, second order convergence in the discrete H 1 -norm is proved, assuming that τ , h and τ 4 h are sufficiently small, where τ is the time-step and h is the space mesh-size. The convergence analysis is based on the investigation of a modified version of the proposed finite difference method, which is innovative and handles the stability difficulties due to the presence of a nonlinear derivative term in the equation. The efficiency of the proposed finite difference method is verified by results from numerical experiments.</description><identifier>ISSN: 0885-7474</identifier><identifier>EISSN: 1573-7691</identifier><identifier>DOI: 10.1007/s10915-018-0718-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Algorithms ; Approximation ; Boundary value problems ; Computational Mathematics and Numerical Analysis ; Convergence ; Error analysis ; Finite difference method ; Mathematical analysis ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Methods ; Numerical analysis ; Theoretical</subject><ispartof>Journal of scientific computing, 2018-10, Vol.77 (1), p.634-656</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-4afc033dd5bb7a356ae31be2743dcb1e3a361dd4b8e7ae36692f6b7c667061403</citedby><cites>FETCH-LOGICAL-c316t-4afc033dd5bb7a356ae31be2743dcb1e3a361dd4b8e7ae36692f6b7c667061403</cites><orcidid>0000-0003-0234-0175</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10915-018-0718-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918315149?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21368,27903,27904,33723,41467,42536,43784,51297,64361,64365,72215</link.rule.ids></links><search><creatorcontrib>Zouraris, Georgios E.</creatorcontrib><title>A Linear Implicit Finite Difference Discretization of the Schrödinger–Hirota Equation</title><title>Journal of scientific computing</title><addtitle>J Sci Comput</addtitle><description>A new linear implicit finite difference method is proposed for the approximation of the solution to a periodic, initial value problem for a Schrödinger–Hirota equation. Optimal, second order convergence in the discrete H 1 -norm is proved, assuming that τ , h and τ 4 h are sufficiently small, where τ is the time-step and h is the space mesh-size. The convergence analysis is based on the investigation of a modified version of the proposed finite difference method, which is innovative and handles the stability difficulties due to the presence of a nonlinear derivative term in the equation. The efficiency of the proposed finite difference method is verified by results from numerical experiments.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Approximation</subject><subject>Boundary value problems</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Convergence</subject><subject>Error analysis</subject><subject>Finite difference method</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Methods</subject><subject>Numerical analysis</subject><subject>Theoretical</subject><issn>0885-7474</issn><issn>1573-7691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1OwzAQhS0EEqVwAHaWWBs8cWIny6r0T6rEApDYWY5jU1dt0truAlbcgbtwAW7CSUgIEis2MyPNe280H0KXQK-BUnETgBaQEQo5oaIt_AgNIBOMCF7AMRrQPM-ISEV6is5CWFNKi7xIBuhphJeuNsrjxXa3cdpFPHW1iwbfOmuNN7XuxqC9ie5VRdfUuLE4rgy-1yv_-VG5-tn4r7f3ufNNVHiyP_yoztGJVZtgLn77ED1OJw_jOVnezRbj0ZJoBjySVFlNGauqrCyFYhlXhkFpEpGySpdgmGIcqiotcyPaFedFYnkpNOeCckgpG6KrPnfnm_3BhCjXzcHX7UmZFJAzyCAtWhX0Ku2bELyxcufdVvkXCVR2AGUPULYAZQdQ8taT9J7Qarsn_5L_N30D3X11Fw</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Zouraris, Georgios E.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0003-0234-0175</orcidid></search><sort><creationdate>20181001</creationdate><title>A Linear Implicit Finite Difference Discretization of the Schrödinger–Hirota Equation</title><author>Zouraris, Georgios E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-4afc033dd5bb7a356ae31be2743dcb1e3a361dd4b8e7ae36692f6b7c667061403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Approximation</topic><topic>Boundary value problems</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Convergence</topic><topic>Error analysis</topic><topic>Finite difference method</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Methods</topic><topic>Numerical analysis</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zouraris, Georgios E.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zouraris, Georgios E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Linear Implicit Finite Difference Discretization of the Schrödinger–Hirota Equation</atitle><jtitle>Journal of scientific computing</jtitle><stitle>J Sci Comput</stitle><date>2018-10-01</date><risdate>2018</risdate><volume>77</volume><issue>1</issue><spage>634</spage><epage>656</epage><pages>634-656</pages><issn>0885-7474</issn><eissn>1573-7691</eissn><abstract>A new linear implicit finite difference method is proposed for the approximation of the solution to a periodic, initial value problem for a Schrödinger–Hirota equation. Optimal, second order convergence in the discrete H 1 -norm is proved, assuming that τ , h and τ 4 h are sufficiently small, where τ is the time-step and h is the space mesh-size. The convergence analysis is based on the investigation of a modified version of the proposed finite difference method, which is innovative and handles the stability difficulties due to the presence of a nonlinear derivative term in the equation. The efficiency of the proposed finite difference method is verified by results from numerical experiments.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10915-018-0718-6</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-0234-0175</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0885-7474
ispartof Journal of scientific computing, 2018-10, Vol.77 (1), p.634-656
issn 0885-7474
1573-7691
language eng
recordid cdi_proquest_journals_2918315149
source Springer Nature - Complete Springer Journals; ProQuest Central UK/Ireland; ProQuest Central
subjects Algebra
Algorithms
Approximation
Boundary value problems
Computational Mathematics and Numerical Analysis
Convergence
Error analysis
Finite difference method
Mathematical analysis
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Methods
Numerical analysis
Theoretical
title A Linear Implicit Finite Difference Discretization of the Schrödinger–Hirota Equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T00%3A57%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Linear%20Implicit%20Finite%20Difference%20Discretization%20of%20the%20Schr%C3%B6dinger%E2%80%93Hirota%20Equation&rft.jtitle=Journal%20of%20scientific%20computing&rft.au=Zouraris,%20Georgios%20E.&rft.date=2018-10-01&rft.volume=77&rft.issue=1&rft.spage=634&rft.epage=656&rft.pages=634-656&rft.issn=0885-7474&rft.eissn=1573-7691&rft_id=info:doi/10.1007/s10915-018-0718-6&rft_dat=%3Cproquest_cross%3E2918315149%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918315149&rft_id=info:pmid/&rfr_iscdi=true