A Posteriori Error Estimates of Virtual Element Method for a Simplified Friction Problem
We study a posteriori error analysis of the virtual element method (VEM) for a simplified friction problem, which is a representative elliptic variational inequality of the second kind. By treating hanging nodes as vertices of polygonal elements, the virtual element method does not require any local...
Gespeichert in:
Veröffentlicht in: | Journal of scientific computing 2020-06, Vol.83 (3), p.52, Article 52 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 52 |
container_title | Journal of scientific computing |
container_volume | 83 |
creator | Deng, Yanling Wang, Fei Wei, Huayi |
description | We study a posteriori error analysis of the virtual element method (VEM) for a simplified friction problem, which is a representative elliptic variational inequality of the second kind. By treating hanging nodes as vertices of polygonal elements, the virtual element method does not require any local mesh post-processing after the adaptive mesh refinement. In this work, residual type error estimators are derived for designing adaptive VEM to solve the simplified friction problem. Furthermore, the reliability and efficiency of the error estimators are proved. Finally, a numerical example is given to verify the theoretical results. |
doi_str_mv | 10.1007/s10915-020-01242-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918314519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918314519</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-5a3bb9efffbcf3202fc6308fb2ea63666af2ce32ca16b46a3acfea3f51c8e3693</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wFXAdTSPmcxkWcpUhYoFH7gLmfRGU6aTmqQL_71TR3Dn6m6-cw73Q-iS0WtGaXWTGFWsJJRTQhkvOFFHaMLKSpBKKnaMJrSuS1IVVXGKzlLaUEpVrfgEvc3wKqQM0YfocRNjiLhJ2W9NhoSDw68-5r3pcNPBFvqMHyB_hDV2A2fwk9_uOu88rPEiept96PEqhnZgz9GJM12Ci987RS-L5nl-R5aPt_fz2ZJYwVQmpRFtq8A511onOOXOSkFr13IwUkgpjeMWBLeGybaQRhjrwAhXMluDkEpM0dXYu4vhcw8p603Yx36Y1FyxWrCiZAeKj5SNIaUITu_i8GP80ozqg0E9GtSDQf1jUB9CYgylAe7fIf5V_5P6BroCdLg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918314519</pqid></control><display><type>article</type><title>A Posteriori Error Estimates of Virtual Element Method for a Simplified Friction Problem</title><source>SpringerLink Journals</source><source>ProQuest Central</source><creator>Deng, Yanling ; Wang, Fei ; Wei, Huayi</creator><creatorcontrib>Deng, Yanling ; Wang, Fei ; Wei, Huayi</creatorcontrib><description>We study a posteriori error analysis of the virtual element method (VEM) for a simplified friction problem, which is a representative elliptic variational inequality of the second kind. By treating hanging nodes as vertices of polygonal elements, the virtual element method does not require any local mesh post-processing after the adaptive mesh refinement. In this work, residual type error estimators are derived for designing adaptive VEM to solve the simplified friction problem. Furthermore, the reliability and efficiency of the error estimators are proved. Finally, a numerical example is given to verify the theoretical results.</description><identifier>ISSN: 0885-7474</identifier><identifier>EISSN: 1573-7691</identifier><identifier>DOI: 10.1007/s10915-020-01242-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Apexes ; Approximation ; Computational Mathematics and Numerical Analysis ; Error analysis ; Estimators ; Friction ; Grid refinement (mathematics) ; Interfaces ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Partial differential equations ; Theoretical</subject><ispartof>Journal of scientific computing, 2020-06, Vol.83 (3), p.52, Article 52</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-5a3bb9efffbcf3202fc6308fb2ea63666af2ce32ca16b46a3acfea3f51c8e3693</citedby><cites>FETCH-LOGICAL-c319t-5a3bb9efffbcf3202fc6308fb2ea63666af2ce32ca16b46a3acfea3f51c8e3693</cites><orcidid>0000-0002-9745-1195</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10915-020-01242-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918314519?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Deng, Yanling</creatorcontrib><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Wei, Huayi</creatorcontrib><title>A Posteriori Error Estimates of Virtual Element Method for a Simplified Friction Problem</title><title>Journal of scientific computing</title><addtitle>J Sci Comput</addtitle><description>We study a posteriori error analysis of the virtual element method (VEM) for a simplified friction problem, which is a representative elliptic variational inequality of the second kind. By treating hanging nodes as vertices of polygonal elements, the virtual element method does not require any local mesh post-processing after the adaptive mesh refinement. In this work, residual type error estimators are derived for designing adaptive VEM to solve the simplified friction problem. Furthermore, the reliability and efficiency of the error estimators are proved. Finally, a numerical example is given to verify the theoretical results.</description><subject>Algorithms</subject><subject>Apexes</subject><subject>Approximation</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Error analysis</subject><subject>Estimators</subject><subject>Friction</subject><subject>Grid refinement (mathematics)</subject><subject>Interfaces</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Partial differential equations</subject><subject>Theoretical</subject><issn>0885-7474</issn><issn>1573-7691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEtLAzEUhYMoWKt_wFXAdTSPmcxkWcpUhYoFH7gLmfRGU6aTmqQL_71TR3Dn6m6-cw73Q-iS0WtGaXWTGFWsJJRTQhkvOFFHaMLKSpBKKnaMJrSuS1IVVXGKzlLaUEpVrfgEvc3wKqQM0YfocRNjiLhJ2W9NhoSDw68-5r3pcNPBFvqMHyB_hDV2A2fwk9_uOu88rPEiept96PEqhnZgz9GJM12Ci987RS-L5nl-R5aPt_fz2ZJYwVQmpRFtq8A511onOOXOSkFr13IwUkgpjeMWBLeGybaQRhjrwAhXMluDkEpM0dXYu4vhcw8p603Yx36Y1FyxWrCiZAeKj5SNIaUITu_i8GP80ozqg0E9GtSDQf1jUB9CYgylAe7fIf5V_5P6BroCdLg</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Deng, Yanling</creator><creator>Wang, Fei</creator><creator>Wei, Huayi</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-9745-1195</orcidid></search><sort><creationdate>20200601</creationdate><title>A Posteriori Error Estimates of Virtual Element Method for a Simplified Friction Problem</title><author>Deng, Yanling ; Wang, Fei ; Wei, Huayi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-5a3bb9efffbcf3202fc6308fb2ea63666af2ce32ca16b46a3acfea3f51c8e3693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Apexes</topic><topic>Approximation</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Error analysis</topic><topic>Estimators</topic><topic>Friction</topic><topic>Grid refinement (mathematics)</topic><topic>Interfaces</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Partial differential equations</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Yanling</creatorcontrib><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Wei, Huayi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Yanling</au><au>Wang, Fei</au><au>Wei, Huayi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Posteriori Error Estimates of Virtual Element Method for a Simplified Friction Problem</atitle><jtitle>Journal of scientific computing</jtitle><stitle>J Sci Comput</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>83</volume><issue>3</issue><spage>52</spage><pages>52-</pages><artnum>52</artnum><issn>0885-7474</issn><eissn>1573-7691</eissn><abstract>We study a posteriori error analysis of the virtual element method (VEM) for a simplified friction problem, which is a representative elliptic variational inequality of the second kind. By treating hanging nodes as vertices of polygonal elements, the virtual element method does not require any local mesh post-processing after the adaptive mesh refinement. In this work, residual type error estimators are derived for designing adaptive VEM to solve the simplified friction problem. Furthermore, the reliability and efficiency of the error estimators are proved. Finally, a numerical example is given to verify the theoretical results.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10915-020-01242-9</doi><orcidid>https://orcid.org/0000-0002-9745-1195</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-7474 |
ispartof | Journal of scientific computing, 2020-06, Vol.83 (3), p.52, Article 52 |
issn | 0885-7474 1573-7691 |
language | eng |
recordid | cdi_proquest_journals_2918314519 |
source | SpringerLink Journals; ProQuest Central |
subjects | Algorithms Apexes Approximation Computational Mathematics and Numerical Analysis Error analysis Estimators Friction Grid refinement (mathematics) Interfaces Mathematical and Computational Engineering Mathematical and Computational Physics Mathematics Mathematics and Statistics Partial differential equations Theoretical |
title | A Posteriori Error Estimates of Virtual Element Method for a Simplified Friction Problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A45%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Posteriori%20Error%20Estimates%20of%20Virtual%20Element%20Method%20for%20a%20Simplified%20Friction%20Problem&rft.jtitle=Journal%20of%20scientific%20computing&rft.au=Deng,%20Yanling&rft.date=2020-06-01&rft.volume=83&rft.issue=3&rft.spage=52&rft.pages=52-&rft.artnum=52&rft.issn=0885-7474&rft.eissn=1573-7691&rft_id=info:doi/10.1007/s10915-020-01242-9&rft_dat=%3Cproquest_cross%3E2918314519%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918314519&rft_id=info:pmid/&rfr_iscdi=true |