A Posteriori Error Estimates of Virtual Element Method for a Simplified Friction Problem

We study a posteriori error analysis of the virtual element method (VEM) for a simplified friction problem, which is a representative elliptic variational inequality of the second kind. By treating hanging nodes as vertices of polygonal elements, the virtual element method does not require any local...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of scientific computing 2020-06, Vol.83 (3), p.52, Article 52
Hauptverfasser: Deng, Yanling, Wang, Fei, Wei, Huayi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 52
container_title Journal of scientific computing
container_volume 83
creator Deng, Yanling
Wang, Fei
Wei, Huayi
description We study a posteriori error analysis of the virtual element method (VEM) for a simplified friction problem, which is a representative elliptic variational inequality of the second kind. By treating hanging nodes as vertices of polygonal elements, the virtual element method does not require any local mesh post-processing after the adaptive mesh refinement. In this work, residual type error estimators are derived for designing adaptive VEM to solve the simplified friction problem. Furthermore, the reliability and efficiency of the error estimators are proved. Finally, a numerical example is given to verify the theoretical results.
doi_str_mv 10.1007/s10915-020-01242-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918314519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918314519</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-5a3bb9efffbcf3202fc6308fb2ea63666af2ce32ca16b46a3acfea3f51c8e3693</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wFXAdTSPmcxkWcpUhYoFH7gLmfRGU6aTmqQL_71TR3Dn6m6-cw73Q-iS0WtGaXWTGFWsJJRTQhkvOFFHaMLKSpBKKnaMJrSuS1IVVXGKzlLaUEpVrfgEvc3wKqQM0YfocRNjiLhJ2W9NhoSDw68-5r3pcNPBFvqMHyB_hDV2A2fwk9_uOu88rPEiept96PEqhnZgz9GJM12Ci987RS-L5nl-R5aPt_fz2ZJYwVQmpRFtq8A511onOOXOSkFr13IwUkgpjeMWBLeGybaQRhjrwAhXMluDkEpM0dXYu4vhcw8p603Yx36Y1FyxWrCiZAeKj5SNIaUITu_i8GP80ozqg0E9GtSDQf1jUB9CYgylAe7fIf5V_5P6BroCdLg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918314519</pqid></control><display><type>article</type><title>A Posteriori Error Estimates of Virtual Element Method for a Simplified Friction Problem</title><source>SpringerLink Journals</source><source>ProQuest Central</source><creator>Deng, Yanling ; Wang, Fei ; Wei, Huayi</creator><creatorcontrib>Deng, Yanling ; Wang, Fei ; Wei, Huayi</creatorcontrib><description>We study a posteriori error analysis of the virtual element method (VEM) for a simplified friction problem, which is a representative elliptic variational inequality of the second kind. By treating hanging nodes as vertices of polygonal elements, the virtual element method does not require any local mesh post-processing after the adaptive mesh refinement. In this work, residual type error estimators are derived for designing adaptive VEM to solve the simplified friction problem. Furthermore, the reliability and efficiency of the error estimators are proved. Finally, a numerical example is given to verify the theoretical results.</description><identifier>ISSN: 0885-7474</identifier><identifier>EISSN: 1573-7691</identifier><identifier>DOI: 10.1007/s10915-020-01242-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Apexes ; Approximation ; Computational Mathematics and Numerical Analysis ; Error analysis ; Estimators ; Friction ; Grid refinement (mathematics) ; Interfaces ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Partial differential equations ; Theoretical</subject><ispartof>Journal of scientific computing, 2020-06, Vol.83 (3), p.52, Article 52</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-5a3bb9efffbcf3202fc6308fb2ea63666af2ce32ca16b46a3acfea3f51c8e3693</citedby><cites>FETCH-LOGICAL-c319t-5a3bb9efffbcf3202fc6308fb2ea63666af2ce32ca16b46a3acfea3f51c8e3693</cites><orcidid>0000-0002-9745-1195</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10915-020-01242-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918314519?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Deng, Yanling</creatorcontrib><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Wei, Huayi</creatorcontrib><title>A Posteriori Error Estimates of Virtual Element Method for a Simplified Friction Problem</title><title>Journal of scientific computing</title><addtitle>J Sci Comput</addtitle><description>We study a posteriori error analysis of the virtual element method (VEM) for a simplified friction problem, which is a representative elliptic variational inequality of the second kind. By treating hanging nodes as vertices of polygonal elements, the virtual element method does not require any local mesh post-processing after the adaptive mesh refinement. In this work, residual type error estimators are derived for designing adaptive VEM to solve the simplified friction problem. Furthermore, the reliability and efficiency of the error estimators are proved. Finally, a numerical example is given to verify the theoretical results.</description><subject>Algorithms</subject><subject>Apexes</subject><subject>Approximation</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Error analysis</subject><subject>Estimators</subject><subject>Friction</subject><subject>Grid refinement (mathematics)</subject><subject>Interfaces</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Partial differential equations</subject><subject>Theoretical</subject><issn>0885-7474</issn><issn>1573-7691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEtLAzEUhYMoWKt_wFXAdTSPmcxkWcpUhYoFH7gLmfRGU6aTmqQL_71TR3Dn6m6-cw73Q-iS0WtGaXWTGFWsJJRTQhkvOFFHaMLKSpBKKnaMJrSuS1IVVXGKzlLaUEpVrfgEvc3wKqQM0YfocRNjiLhJ2W9NhoSDw68-5r3pcNPBFvqMHyB_hDV2A2fwk9_uOu88rPEiept96PEqhnZgz9GJM12Ci987RS-L5nl-R5aPt_fz2ZJYwVQmpRFtq8A511onOOXOSkFr13IwUkgpjeMWBLeGybaQRhjrwAhXMluDkEpM0dXYu4vhcw8p603Yx36Y1FyxWrCiZAeKj5SNIaUITu_i8GP80ozqg0E9GtSDQf1jUB9CYgylAe7fIf5V_5P6BroCdLg</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Deng, Yanling</creator><creator>Wang, Fei</creator><creator>Wei, Huayi</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-9745-1195</orcidid></search><sort><creationdate>20200601</creationdate><title>A Posteriori Error Estimates of Virtual Element Method for a Simplified Friction Problem</title><author>Deng, Yanling ; Wang, Fei ; Wei, Huayi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-5a3bb9efffbcf3202fc6308fb2ea63666af2ce32ca16b46a3acfea3f51c8e3693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Apexes</topic><topic>Approximation</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Error analysis</topic><topic>Estimators</topic><topic>Friction</topic><topic>Grid refinement (mathematics)</topic><topic>Interfaces</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Partial differential equations</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Yanling</creatorcontrib><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Wei, Huayi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Yanling</au><au>Wang, Fei</au><au>Wei, Huayi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Posteriori Error Estimates of Virtual Element Method for a Simplified Friction Problem</atitle><jtitle>Journal of scientific computing</jtitle><stitle>J Sci Comput</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>83</volume><issue>3</issue><spage>52</spage><pages>52-</pages><artnum>52</artnum><issn>0885-7474</issn><eissn>1573-7691</eissn><abstract>We study a posteriori error analysis of the virtual element method (VEM) for a simplified friction problem, which is a representative elliptic variational inequality of the second kind. By treating hanging nodes as vertices of polygonal elements, the virtual element method does not require any local mesh post-processing after the adaptive mesh refinement. In this work, residual type error estimators are derived for designing adaptive VEM to solve the simplified friction problem. Furthermore, the reliability and efficiency of the error estimators are proved. Finally, a numerical example is given to verify the theoretical results.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10915-020-01242-9</doi><orcidid>https://orcid.org/0000-0002-9745-1195</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0885-7474
ispartof Journal of scientific computing, 2020-06, Vol.83 (3), p.52, Article 52
issn 0885-7474
1573-7691
language eng
recordid cdi_proquest_journals_2918314519
source SpringerLink Journals; ProQuest Central
subjects Algorithms
Apexes
Approximation
Computational Mathematics and Numerical Analysis
Error analysis
Estimators
Friction
Grid refinement (mathematics)
Interfaces
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Partial differential equations
Theoretical
title A Posteriori Error Estimates of Virtual Element Method for a Simplified Friction Problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A45%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Posteriori%20Error%20Estimates%20of%20Virtual%20Element%20Method%20for%20a%20Simplified%20Friction%20Problem&rft.jtitle=Journal%20of%20scientific%20computing&rft.au=Deng,%20Yanling&rft.date=2020-06-01&rft.volume=83&rft.issue=3&rft.spage=52&rft.pages=52-&rft.artnum=52&rft.issn=0885-7474&rft.eissn=1573-7691&rft_id=info:doi/10.1007/s10915-020-01242-9&rft_dat=%3Cproquest_cross%3E2918314519%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918314519&rft_id=info:pmid/&rfr_iscdi=true