An Efficient Lagrangian Interpolation Scheme for Computing Flow Maps and Line Integrals using Discrete Velocity Data

We propose a new class of Lagrangian approaches for constructing the flow maps of given dynamical systems. In the case when only discrete velocity data at mesh points is available, an interpolation step will be required. However, in our proposed approaches all particle trajectories share a common gl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of scientific computing 2018-07, Vol.76 (1), p.120-144
Hauptverfasser: You, Guoqiao, Shi, Renkun, Xu, Yuhua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 144
container_issue 1
container_start_page 120
container_title Journal of scientific computing
container_volume 76
creator You, Guoqiao
Shi, Renkun
Xu, Yuhua
description We propose a new class of Lagrangian approaches for constructing the flow maps of given dynamical systems. In the case when only discrete velocity data at mesh points is available, an interpolation step will be required. However, in our proposed approaches all particle trajectories share a common global interpolation at each time step and therefore interpolation operations will not increase the overall computational complexity. The old Lagrangian approaches propose to solve the corresponding ordinary differential equations (ODEs) backward in time to obtain the backward flow map. It is inconvenient and not natural, especially when incorporated with certain computational fluid dynamic solvers, because the velocity field needs to be loaded from the terminal time backward to the initial time. In contrast, our proposed approaches for computing the backward flow map propose to solve the corresponding ODEs forward in time which is more practical. We will also extend the proposed approaches to compute line integrals along any particle trajectory. This paper gives a detailed analysis on the computational complexity and error estimate of the proposed Lagrangian approach. Finally, a wide range of applications of our approaches will be given, including the so-called coherent ergodic partition and the high frequency wave propagations based on geometric optic.
doi_str_mv 10.1007/s10915-017-0620-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918314052</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918314052</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-94a5286c6bef4abb081aa8c324c3205a8a1049ed9b1c5f5aefdd38de0a3102bb3</originalsourceid><addsrcrecordid>eNp1kDtPwzAURi0EEqXwA9gsMQeu83TGqi1QKYiBx2rdOE5wldrBdoT670kpEhODdZdzPkuHkGsGtwyguPMMSpZFwIoI8hii4oTMWFYkUZGX7JTMgPMsKtIiPScX3m8BoORlPCNhYei6bbXUygRaYefQdBoN3Zig3GB7DNoa-iI_1E7R1jq6tLthDNp09L63X_QJB0_RNLTSRv1Y00Tv6egPyEp76VRQ9F31VuqwpysMeEnO2olRV793Tt7u16_Lx6h6ftgsF1UkE5aHqEwxi3ku81q1KdY1cIbIZRKn04MMOTJIS9WUNZNZm6FqmybhjQJMGMR1nczJzXF3cPZzVD6IrR2dmb4Uccl4wlLI4oliR0o6671TrRic3qHbCwbiEFcc44oprjjEFcXkxEfHT6zplPtb_l_6BmkifcU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918314052</pqid></control><display><type>article</type><title>An Efficient Lagrangian Interpolation Scheme for Computing Flow Maps and Line Integrals using Discrete Velocity Data</title><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>You, Guoqiao ; Shi, Renkun ; Xu, Yuhua</creator><creatorcontrib>You, Guoqiao ; Shi, Renkun ; Xu, Yuhua</creatorcontrib><description>We propose a new class of Lagrangian approaches for constructing the flow maps of given dynamical systems. In the case when only discrete velocity data at mesh points is available, an interpolation step will be required. However, in our proposed approaches all particle trajectories share a common global interpolation at each time step and therefore interpolation operations will not increase the overall computational complexity. The old Lagrangian approaches propose to solve the corresponding ordinary differential equations (ODEs) backward in time to obtain the backward flow map. It is inconvenient and not natural, especially when incorporated with certain computational fluid dynamic solvers, because the velocity field needs to be loaded from the terminal time backward to the initial time. In contrast, our proposed approaches for computing the backward flow map propose to solve the corresponding ODEs forward in time which is more practical. We will also extend the proposed approaches to compute line integrals along any particle trajectory. This paper gives a detailed analysis on the computational complexity and error estimate of the proposed Lagrangian approach. Finally, a wide range of applications of our approaches will be given, including the so-called coherent ergodic partition and the high frequency wave propagations based on geometric optic.</description><identifier>ISSN: 0885-7474</identifier><identifier>EISSN: 1573-7691</identifier><identifier>DOI: 10.1007/s10915-017-0620-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Complexity ; Computational Mathematics and Numerical Analysis ; Differential equations ; Flow mapping ; Integrals ; Interpolation ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical functions ; Mathematics ; Mathematics and Statistics ; Numerical analysis ; Ordinary differential equations ; Partial differential equations ; Particle trajectories ; Theoretical ; Velocity ; Velocity distribution</subject><ispartof>Journal of scientific computing, 2018-07, Vol.76 (1), p.120-144</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2017</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-94a5286c6bef4abb081aa8c324c3205a8a1049ed9b1c5f5aefdd38de0a3102bb3</citedby><cites>FETCH-LOGICAL-c316t-94a5286c6bef4abb081aa8c324c3205a8a1049ed9b1c5f5aefdd38de0a3102bb3</cites><orcidid>0000-0001-9413-5691</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10915-017-0620-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918314052?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>You, Guoqiao</creatorcontrib><creatorcontrib>Shi, Renkun</creatorcontrib><creatorcontrib>Xu, Yuhua</creatorcontrib><title>An Efficient Lagrangian Interpolation Scheme for Computing Flow Maps and Line Integrals using Discrete Velocity Data</title><title>Journal of scientific computing</title><addtitle>J Sci Comput</addtitle><description>We propose a new class of Lagrangian approaches for constructing the flow maps of given dynamical systems. In the case when only discrete velocity data at mesh points is available, an interpolation step will be required. However, in our proposed approaches all particle trajectories share a common global interpolation at each time step and therefore interpolation operations will not increase the overall computational complexity. The old Lagrangian approaches propose to solve the corresponding ordinary differential equations (ODEs) backward in time to obtain the backward flow map. It is inconvenient and not natural, especially when incorporated with certain computational fluid dynamic solvers, because the velocity field needs to be loaded from the terminal time backward to the initial time. In contrast, our proposed approaches for computing the backward flow map propose to solve the corresponding ODEs forward in time which is more practical. We will also extend the proposed approaches to compute line integrals along any particle trajectory. This paper gives a detailed analysis on the computational complexity and error estimate of the proposed Lagrangian approach. Finally, a wide range of applications of our approaches will be given, including the so-called coherent ergodic partition and the high frequency wave propagations based on geometric optic.</description><subject>Algorithms</subject><subject>Complexity</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Differential equations</subject><subject>Flow mapping</subject><subject>Integrals</subject><subject>Interpolation</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical functions</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical analysis</subject><subject>Ordinary differential equations</subject><subject>Partial differential equations</subject><subject>Particle trajectories</subject><subject>Theoretical</subject><subject>Velocity</subject><subject>Velocity distribution</subject><issn>0885-7474</issn><issn>1573-7691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kDtPwzAURi0EEqXwA9gsMQeu83TGqi1QKYiBx2rdOE5wldrBdoT670kpEhODdZdzPkuHkGsGtwyguPMMSpZFwIoI8hii4oTMWFYkUZGX7JTMgPMsKtIiPScX3m8BoORlPCNhYei6bbXUygRaYefQdBoN3Zig3GB7DNoa-iI_1E7R1jq6tLthDNp09L63X_QJB0_RNLTSRv1Y00Tv6egPyEp76VRQ9F31VuqwpysMeEnO2olRV793Tt7u16_Lx6h6ftgsF1UkE5aHqEwxi3ku81q1KdY1cIbIZRKn04MMOTJIS9WUNZNZm6FqmybhjQJMGMR1nczJzXF3cPZzVD6IrR2dmb4Uccl4wlLI4oliR0o6671TrRic3qHbCwbiEFcc44oprjjEFcXkxEfHT6zplPtb_l_6BmkifcU</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>You, Guoqiao</creator><creator>Shi, Renkun</creator><creator>Xu, Yuhua</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0001-9413-5691</orcidid></search><sort><creationdate>20180701</creationdate><title>An Efficient Lagrangian Interpolation Scheme for Computing Flow Maps and Line Integrals using Discrete Velocity Data</title><author>You, Guoqiao ; Shi, Renkun ; Xu, Yuhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-94a5286c6bef4abb081aa8c324c3205a8a1049ed9b1c5f5aefdd38de0a3102bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Complexity</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Differential equations</topic><topic>Flow mapping</topic><topic>Integrals</topic><topic>Interpolation</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical functions</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical analysis</topic><topic>Ordinary differential equations</topic><topic>Partial differential equations</topic><topic>Particle trajectories</topic><topic>Theoretical</topic><topic>Velocity</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>You, Guoqiao</creatorcontrib><creatorcontrib>Shi, Renkun</creatorcontrib><creatorcontrib>Xu, Yuhua</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>You, Guoqiao</au><au>Shi, Renkun</au><au>Xu, Yuhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Efficient Lagrangian Interpolation Scheme for Computing Flow Maps and Line Integrals using Discrete Velocity Data</atitle><jtitle>Journal of scientific computing</jtitle><stitle>J Sci Comput</stitle><date>2018-07-01</date><risdate>2018</risdate><volume>76</volume><issue>1</issue><spage>120</spage><epage>144</epage><pages>120-144</pages><issn>0885-7474</issn><eissn>1573-7691</eissn><abstract>We propose a new class of Lagrangian approaches for constructing the flow maps of given dynamical systems. In the case when only discrete velocity data at mesh points is available, an interpolation step will be required. However, in our proposed approaches all particle trajectories share a common global interpolation at each time step and therefore interpolation operations will not increase the overall computational complexity. The old Lagrangian approaches propose to solve the corresponding ordinary differential equations (ODEs) backward in time to obtain the backward flow map. It is inconvenient and not natural, especially when incorporated with certain computational fluid dynamic solvers, because the velocity field needs to be loaded from the terminal time backward to the initial time. In contrast, our proposed approaches for computing the backward flow map propose to solve the corresponding ODEs forward in time which is more practical. We will also extend the proposed approaches to compute line integrals along any particle trajectory. This paper gives a detailed analysis on the computational complexity and error estimate of the proposed Lagrangian approach. Finally, a wide range of applications of our approaches will be given, including the so-called coherent ergodic partition and the high frequency wave propagations based on geometric optic.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10915-017-0620-7</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0001-9413-5691</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0885-7474
ispartof Journal of scientific computing, 2018-07, Vol.76 (1), p.120-144
issn 0885-7474
1573-7691
language eng
recordid cdi_proquest_journals_2918314052
source SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Algorithms
Complexity
Computational Mathematics and Numerical Analysis
Differential equations
Flow mapping
Integrals
Interpolation
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematical functions
Mathematics
Mathematics and Statistics
Numerical analysis
Ordinary differential equations
Partial differential equations
Particle trajectories
Theoretical
Velocity
Velocity distribution
title An Efficient Lagrangian Interpolation Scheme for Computing Flow Maps and Line Integrals using Discrete Velocity Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T13%3A56%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Efficient%20Lagrangian%20Interpolation%20Scheme%20for%20Computing%20Flow%20Maps%20and%20Line%20Integrals%20using%20Discrete%20Velocity%20Data&rft.jtitle=Journal%20of%20scientific%20computing&rft.au=You,%20Guoqiao&rft.date=2018-07-01&rft.volume=76&rft.issue=1&rft.spage=120&rft.epage=144&rft.pages=120-144&rft.issn=0885-7474&rft.eissn=1573-7691&rft_id=info:doi/10.1007/s10915-017-0620-7&rft_dat=%3Cproquest_cross%3E2918314052%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918314052&rft_id=info:pmid/&rfr_iscdi=true