An Improved Eulerian Approach for the Finite Time Lyapunov Exponent

We propose a new Eulerian numerical approach to compute the Jacobian of flow maps in continuous dynamical systems and subsequently the so-called finite time Lyapunov exponent (FTLE) for Lagrangian coherent structure extraction. The original approach computes the flow map and then numerically determi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of scientific computing 2018-09, Vol.76 (3), p.1407-1435
Hauptverfasser: You, Guoqiao, Leung, Shingyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1435
container_issue 3
container_start_page 1407
container_title Journal of scientific computing
container_volume 76
creator You, Guoqiao
Leung, Shingyu
description We propose a new Eulerian numerical approach to compute the Jacobian of flow maps in continuous dynamical systems and subsequently the so-called finite time Lyapunov exponent (FTLE) for Lagrangian coherent structure extraction. The original approach computes the flow map and then numerically determines the Jacobian of the map using finite differences. The new algorithm improves the original Eulerian formulation so that we first obtain partial differential equations for each component of the Jacobian and then solve these equations to obtain the required Jacobian. For periodic dynamical systems, based on the time doubling technique developed for computing the longtime flow map, we also propose a new efficient iterative method to compute the Jacobian of the longtime flow map. Numerical examples will demonstrate that our new proposed approach is more accurate than the original one in computing the Jacobian and thus the FTLE field, especially near the FTLE ridges.
doi_str_mv 10.1007/s10915-018-0669-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918313752</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918313752</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-837da8aa39c7c3e5de921a787761197c013a2e1dc3a9f72584b120e4c8d5bfc3</originalsourceid><addsrcrecordid>eNp1kMFKAzEQhoMoWKsP4C3gOZpJNpvkWEqrhYKX3kOazdotbXZNdov79kZW8ORpYPi_f4YPoUegz0CpfElANQhCQRFalpqMV2gGQnIiSw3XaEaVEkQWsrhFdykdKaVaaTZDy0XAm3MX24uv8Go4-djYgBdd3lh3wHUbcX_weN2Epvd415w93o62G0J7wauvrg0-9Pfopran5B9-5xzt1qvd8o1s3183y8WWOA5lTxSXlVXWcu2k415UXjOwUklZAmjpKHDLPFSOW11LJlSxB0Z94VQl9rXjc_Q01ebfPgefenNshxjyRcM0KA5cCpZTMKVcbFOKvjZdbM42jgao-VFlJlUmqzI_qsyYGTYxKWfDh49_zf9D375Va68</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918313752</pqid></control><display><type>article</type><title>An Improved Eulerian Approach for the Finite Time Lyapunov Exponent</title><source>Springer Nature</source><source>AUTh Library subscriptions: ProQuest Central</source><source>ProQuest Central UK/Ireland</source><creator>You, Guoqiao ; Leung, Shingyu</creator><creatorcontrib>You, Guoqiao ; Leung, Shingyu</creatorcontrib><description>We propose a new Eulerian numerical approach to compute the Jacobian of flow maps in continuous dynamical systems and subsequently the so-called finite time Lyapunov exponent (FTLE) for Lagrangian coherent structure extraction. The original approach computes the flow map and then numerically determines the Jacobian of the map using finite differences. The new algorithm improves the original Eulerian formulation so that we first obtain partial differential equations for each component of the Jacobian and then solve these equations to obtain the required Jacobian. For periodic dynamical systems, based on the time doubling technique developed for computing the longtime flow map, we also propose a new efficient iterative method to compute the Jacobian of the longtime flow map. Numerical examples will demonstrate that our new proposed approach is more accurate than the original one in computing the Jacobian and thus the FTLE field, especially near the FTLE ridges.</description><identifier>ISSN: 0885-7474</identifier><identifier>EISSN: 1573-7691</identifier><identifier>DOI: 10.1007/s10915-018-0669-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Computational Mathematics and Numerical Analysis ; Dynamical systems ; Flow mapping ; Iterative methods ; Liapunov exponents ; Mathematical analysis ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Methods ; Numerical analysis ; Ordinary differential equations ; Partial differential equations ; Theoretical ; Velocity</subject><ispartof>Journal of scientific computing, 2018-09, Vol.76 (3), p.1407-1435</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-837da8aa39c7c3e5de921a787761197c013a2e1dc3a9f72584b120e4c8d5bfc3</citedby><cites>FETCH-LOGICAL-c316t-837da8aa39c7c3e5de921a787761197c013a2e1dc3a9f72584b120e4c8d5bfc3</cites><orcidid>0000-0001-9413-5691</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10915-018-0669-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918313752?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21368,27903,27904,33723,41467,42536,43784,51297,64361,64365,72215</link.rule.ids></links><search><creatorcontrib>You, Guoqiao</creatorcontrib><creatorcontrib>Leung, Shingyu</creatorcontrib><title>An Improved Eulerian Approach for the Finite Time Lyapunov Exponent</title><title>Journal of scientific computing</title><addtitle>J Sci Comput</addtitle><description>We propose a new Eulerian numerical approach to compute the Jacobian of flow maps in continuous dynamical systems and subsequently the so-called finite time Lyapunov exponent (FTLE) for Lagrangian coherent structure extraction. The original approach computes the flow map and then numerically determines the Jacobian of the map using finite differences. The new algorithm improves the original Eulerian formulation so that we first obtain partial differential equations for each component of the Jacobian and then solve these equations to obtain the required Jacobian. For periodic dynamical systems, based on the time doubling technique developed for computing the longtime flow map, we also propose a new efficient iterative method to compute the Jacobian of the longtime flow map. Numerical examples will demonstrate that our new proposed approach is more accurate than the original one in computing the Jacobian and thus the FTLE field, especially near the FTLE ridges.</description><subject>Algorithms</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Dynamical systems</subject><subject>Flow mapping</subject><subject>Iterative methods</subject><subject>Liapunov exponents</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Methods</subject><subject>Numerical analysis</subject><subject>Ordinary differential equations</subject><subject>Partial differential equations</subject><subject>Theoretical</subject><subject>Velocity</subject><issn>0885-7474</issn><issn>1573-7691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kMFKAzEQhoMoWKsP4C3gOZpJNpvkWEqrhYKX3kOazdotbXZNdov79kZW8ORpYPi_f4YPoUegz0CpfElANQhCQRFalpqMV2gGQnIiSw3XaEaVEkQWsrhFdykdKaVaaTZDy0XAm3MX24uv8Go4-djYgBdd3lh3wHUbcX_weN2Epvd415w93o62G0J7wauvrg0-9Pfopran5B9-5xzt1qvd8o1s3183y8WWOA5lTxSXlVXWcu2k415UXjOwUklZAmjpKHDLPFSOW11LJlSxB0Z94VQl9rXjc_Q01ebfPgefenNshxjyRcM0KA5cCpZTMKVcbFOKvjZdbM42jgao-VFlJlUmqzI_qsyYGTYxKWfDh49_zf9D375Va68</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>You, Guoqiao</creator><creator>Leung, Shingyu</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0001-9413-5691</orcidid></search><sort><creationdate>20180901</creationdate><title>An Improved Eulerian Approach for the Finite Time Lyapunov Exponent</title><author>You, Guoqiao ; Leung, Shingyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-837da8aa39c7c3e5de921a787761197c013a2e1dc3a9f72584b120e4c8d5bfc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Dynamical systems</topic><topic>Flow mapping</topic><topic>Iterative methods</topic><topic>Liapunov exponents</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Methods</topic><topic>Numerical analysis</topic><topic>Ordinary differential equations</topic><topic>Partial differential equations</topic><topic>Theoretical</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>You, Guoqiao</creatorcontrib><creatorcontrib>Leung, Shingyu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>You, Guoqiao</au><au>Leung, Shingyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Improved Eulerian Approach for the Finite Time Lyapunov Exponent</atitle><jtitle>Journal of scientific computing</jtitle><stitle>J Sci Comput</stitle><date>2018-09-01</date><risdate>2018</risdate><volume>76</volume><issue>3</issue><spage>1407</spage><epage>1435</epage><pages>1407-1435</pages><issn>0885-7474</issn><eissn>1573-7691</eissn><abstract>We propose a new Eulerian numerical approach to compute the Jacobian of flow maps in continuous dynamical systems and subsequently the so-called finite time Lyapunov exponent (FTLE) for Lagrangian coherent structure extraction. The original approach computes the flow map and then numerically determines the Jacobian of the map using finite differences. The new algorithm improves the original Eulerian formulation so that we first obtain partial differential equations for each component of the Jacobian and then solve these equations to obtain the required Jacobian. For periodic dynamical systems, based on the time doubling technique developed for computing the longtime flow map, we also propose a new efficient iterative method to compute the Jacobian of the longtime flow map. Numerical examples will demonstrate that our new proposed approach is more accurate than the original one in computing the Jacobian and thus the FTLE field, especially near the FTLE ridges.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10915-018-0669-y</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0001-9413-5691</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0885-7474
ispartof Journal of scientific computing, 2018-09, Vol.76 (3), p.1407-1435
issn 0885-7474
1573-7691
language eng
recordid cdi_proquest_journals_2918313752
source Springer Nature; AUTh Library subscriptions: ProQuest Central; ProQuest Central UK/Ireland
subjects Algorithms
Computational Mathematics and Numerical Analysis
Dynamical systems
Flow mapping
Iterative methods
Liapunov exponents
Mathematical analysis
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Methods
Numerical analysis
Ordinary differential equations
Partial differential equations
Theoretical
Velocity
title An Improved Eulerian Approach for the Finite Time Lyapunov Exponent
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T19%3A29%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Improved%20Eulerian%20Approach%20for%20the%20Finite%20Time%20Lyapunov%20Exponent&rft.jtitle=Journal%20of%20scientific%20computing&rft.au=You,%20Guoqiao&rft.date=2018-09-01&rft.volume=76&rft.issue=3&rft.spage=1407&rft.epage=1435&rft.pages=1407-1435&rft.issn=0885-7474&rft.eissn=1573-7691&rft_id=info:doi/10.1007/s10915-018-0669-y&rft_dat=%3Cproquest_cross%3E2918313752%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918313752&rft_id=info:pmid/&rfr_iscdi=true