Inflow-Based Gradient Finite Volume Method for a Propagation in a Normal Direction in a Polyhedron Mesh
An inflow-based gradient is proposed to solve a propagation in a normal direction with a cell-centered finite volume method. The proposed discretization of the magnitude of gradient is an extension of Rouy–Tourin scheme (SIAM J Numer Anal 29:867–884, 1992 ) and Osher–Sethian scheme (J Comput Phys 79...
Gespeichert in:
Veröffentlicht in: | Journal of scientific computing 2017-07, Vol.72 (1), p.442-465 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 465 |
---|---|
container_issue | 1 |
container_start_page | 442 |
container_title | Journal of scientific computing |
container_volume | 72 |
creator | Hahn, Jooyoung Mikula, Karol Frolkovič, Peter Basara, Branislav |
description | An inflow-based gradient is proposed to solve a propagation in a normal direction with a cell-centered finite volume method. The proposed discretization of the magnitude of gradient is an extension of Rouy–Tourin scheme (SIAM J Numer Anal 29:867–884,
1992
) and Osher–Sethian scheme (J Comput Phys 79:12–49,
1988
) in two cases; the first is that the proposed scheme can be applied in a polyhedron mesh in three dimensions and the second is that its corresponding form on a regular structured cube mesh uses the second order upwind difference. Considering a practical application in three dimensional mesh, we use the simplest decomposed domains for a parallel computation. Moreover, the implementation is straightforwardly and easily combined with a conventional finite volume code. A higher order of convergence and a recovery of signed distance function from a sparse data are illustrated in numerical examples on hexahedron or polyhedron meshes. |
doi_str_mv | 10.1007/s10915-017-0364-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918313697</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918313697</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-4df8557cde953fbfbd28797095508b250694ed973023caabf52c7fb0d58adb3b3</originalsourceid><addsrcrecordid>eNp1kMFKAzEQhoMoWKsP4C3gOTrZbDbJUauthVZ7UK8hu0naLdtNTbZI394tFXryNMzwf__Ah9AthXsKIB4SBUU5ASoIsCIn-RkaUC4YEYWi52gAUnIicpFfoquU1gCgpMoGaDltfRN-yJNJzuJJNLZ2bYfHdVt3Dn-FZrdxeO66VbDYh4gNXsSwNUvT1aHFddsf3kLcmAY_19FVp-siNPuVs7Hf5y6trtGFN01yN39ziD7HLx-jVzJ7n0xHjzNSMZl1JLdeci4q6xRnvvSlzaRQAhTnIMuMQ6FyZ5VgkLHKmNLzrBK-BMulsSUr2RDdHXu3MXzvXOr0Ouxi27_UmaKSUVb09BDRY6qKIaXovN7GemPiXlPQB5_66FP3PvXBp857Jjsyqc-2SxdPzf9DvykbeBE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918313697</pqid></control><display><type>article</type><title>Inflow-Based Gradient Finite Volume Method for a Propagation in a Normal Direction in a Polyhedron Mesh</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Hahn, Jooyoung ; Mikula, Karol ; Frolkovič, Peter ; Basara, Branislav</creator><creatorcontrib>Hahn, Jooyoung ; Mikula, Karol ; Frolkovič, Peter ; Basara, Branislav</creatorcontrib><description>An inflow-based gradient is proposed to solve a propagation in a normal direction with a cell-centered finite volume method. The proposed discretization of the magnitude of gradient is an extension of Rouy–Tourin scheme (SIAM J Numer Anal 29:867–884,
1992
) and Osher–Sethian scheme (J Comput Phys 79:12–49,
1988
) in two cases; the first is that the proposed scheme can be applied in a polyhedron mesh in three dimensions and the second is that its corresponding form on a regular structured cube mesh uses the second order upwind difference. Considering a practical application in three dimensional mesh, we use the simplest decomposed domains for a parallel computation. Moreover, the implementation is straightforwardly and easily combined with a conventional finite volume code. A higher order of convergence and a recovery of signed distance function from a sparse data are illustrated in numerical examples on hexahedron or polyhedron meshes.</description><identifier>ISSN: 0885-7474</identifier><identifier>EISSN: 1573-7691</identifier><identifier>DOI: 10.1007/s10915-017-0364-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Approximation ; Computational Mathematics and Numerical Analysis ; Finite volume method ; Inflow ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Neighborhoods ; Numerical analysis ; Parallel processing ; Polyhedra ; Propagation ; Theoretical</subject><ispartof>Journal of scientific computing, 2017-07, Vol.72 (1), p.442-465</ispartof><rights>Springer Science+Business Media New York 2017</rights><rights>Springer Science+Business Media New York 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-4df8557cde953fbfbd28797095508b250694ed973023caabf52c7fb0d58adb3b3</citedby><cites>FETCH-LOGICAL-c382t-4df8557cde953fbfbd28797095508b250694ed973023caabf52c7fb0d58adb3b3</cites><orcidid>0000-0002-3561-6943 ; 0000-0003-4357-1009</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10915-017-0364-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918313697?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,777,781,21369,27905,27906,33725,41469,42538,43786,51300,64364,64368,72218</link.rule.ids></links><search><creatorcontrib>Hahn, Jooyoung</creatorcontrib><creatorcontrib>Mikula, Karol</creatorcontrib><creatorcontrib>Frolkovič, Peter</creatorcontrib><creatorcontrib>Basara, Branislav</creatorcontrib><title>Inflow-Based Gradient Finite Volume Method for a Propagation in a Normal Direction in a Polyhedron Mesh</title><title>Journal of scientific computing</title><addtitle>J Sci Comput</addtitle><description>An inflow-based gradient is proposed to solve a propagation in a normal direction with a cell-centered finite volume method. The proposed discretization of the magnitude of gradient is an extension of Rouy–Tourin scheme (SIAM J Numer Anal 29:867–884,
1992
) and Osher–Sethian scheme (J Comput Phys 79:12–49,
1988
) in two cases; the first is that the proposed scheme can be applied in a polyhedron mesh in three dimensions and the second is that its corresponding form on a regular structured cube mesh uses the second order upwind difference. Considering a practical application in three dimensional mesh, we use the simplest decomposed domains for a parallel computation. Moreover, the implementation is straightforwardly and easily combined with a conventional finite volume code. A higher order of convergence and a recovery of signed distance function from a sparse data are illustrated in numerical examples on hexahedron or polyhedron meshes.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Finite volume method</subject><subject>Inflow</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Neighborhoods</subject><subject>Numerical analysis</subject><subject>Parallel processing</subject><subject>Polyhedra</subject><subject>Propagation</subject><subject>Theoretical</subject><issn>0885-7474</issn><issn>1573-7691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kMFKAzEQhoMoWKsP4C3gOTrZbDbJUauthVZ7UK8hu0naLdtNTbZI394tFXryNMzwf__Ah9AthXsKIB4SBUU5ASoIsCIn-RkaUC4YEYWi52gAUnIicpFfoquU1gCgpMoGaDltfRN-yJNJzuJJNLZ2bYfHdVt3Dn-FZrdxeO66VbDYh4gNXsSwNUvT1aHFddsf3kLcmAY_19FVp-siNPuVs7Hf5y6trtGFN01yN39ziD7HLx-jVzJ7n0xHjzNSMZl1JLdeci4q6xRnvvSlzaRQAhTnIMuMQ6FyZ5VgkLHKmNLzrBK-BMulsSUr2RDdHXu3MXzvXOr0Ouxi27_UmaKSUVb09BDRY6qKIaXovN7GemPiXlPQB5_66FP3PvXBp857Jjsyqc-2SxdPzf9DvykbeBE</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Hahn, Jooyoung</creator><creator>Mikula, Karol</creator><creator>Frolkovič, Peter</creator><creator>Basara, Branislav</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-3561-6943</orcidid><orcidid>https://orcid.org/0000-0003-4357-1009</orcidid></search><sort><creationdate>20170701</creationdate><title>Inflow-Based Gradient Finite Volume Method for a Propagation in a Normal Direction in a Polyhedron Mesh</title><author>Hahn, Jooyoung ; Mikula, Karol ; Frolkovič, Peter ; Basara, Branislav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-4df8557cde953fbfbd28797095508b250694ed973023caabf52c7fb0d58adb3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Finite volume method</topic><topic>Inflow</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Neighborhoods</topic><topic>Numerical analysis</topic><topic>Parallel processing</topic><topic>Polyhedra</topic><topic>Propagation</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hahn, Jooyoung</creatorcontrib><creatorcontrib>Mikula, Karol</creatorcontrib><creatorcontrib>Frolkovič, Peter</creatorcontrib><creatorcontrib>Basara, Branislav</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hahn, Jooyoung</au><au>Mikula, Karol</au><au>Frolkovič, Peter</au><au>Basara, Branislav</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inflow-Based Gradient Finite Volume Method for a Propagation in a Normal Direction in a Polyhedron Mesh</atitle><jtitle>Journal of scientific computing</jtitle><stitle>J Sci Comput</stitle><date>2017-07-01</date><risdate>2017</risdate><volume>72</volume><issue>1</issue><spage>442</spage><epage>465</epage><pages>442-465</pages><issn>0885-7474</issn><eissn>1573-7691</eissn><abstract>An inflow-based gradient is proposed to solve a propagation in a normal direction with a cell-centered finite volume method. The proposed discretization of the magnitude of gradient is an extension of Rouy–Tourin scheme (SIAM J Numer Anal 29:867–884,
1992
) and Osher–Sethian scheme (J Comput Phys 79:12–49,
1988
) in two cases; the first is that the proposed scheme can be applied in a polyhedron mesh in three dimensions and the second is that its corresponding form on a regular structured cube mesh uses the second order upwind difference. Considering a practical application in three dimensional mesh, we use the simplest decomposed domains for a parallel computation. Moreover, the implementation is straightforwardly and easily combined with a conventional finite volume code. A higher order of convergence and a recovery of signed distance function from a sparse data are illustrated in numerical examples on hexahedron or polyhedron meshes.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10915-017-0364-4</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-3561-6943</orcidid><orcidid>https://orcid.org/0000-0003-4357-1009</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-7474 |
ispartof | Journal of scientific computing, 2017-07, Vol.72 (1), p.442-465 |
issn | 0885-7474 1573-7691 |
language | eng |
recordid | cdi_proquest_journals_2918313697 |
source | Springer Nature - Complete Springer Journals; ProQuest Central UK/Ireland; ProQuest Central |
subjects | Algorithms Approximation Computational Mathematics and Numerical Analysis Finite volume method Inflow Mathematical and Computational Engineering Mathematical and Computational Physics Mathematics Mathematics and Statistics Neighborhoods Numerical analysis Parallel processing Polyhedra Propagation Theoretical |
title | Inflow-Based Gradient Finite Volume Method for a Propagation in a Normal Direction in a Polyhedron Mesh |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T05%3A57%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inflow-Based%20Gradient%20Finite%20Volume%20Method%20for%20a%20Propagation%20in%20a%20Normal%20Direction%20in%20a%20Polyhedron%20Mesh&rft.jtitle=Journal%20of%20scientific%20computing&rft.au=Hahn,%20Jooyoung&rft.date=2017-07-01&rft.volume=72&rft.issue=1&rft.spage=442&rft.epage=465&rft.pages=442-465&rft.issn=0885-7474&rft.eissn=1573-7691&rft_id=info:doi/10.1007/s10915-017-0364-4&rft_dat=%3Cproquest_cross%3E2918313697%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918313697&rft_id=info:pmid/&rfr_iscdi=true |