Inflow-Based Gradient Finite Volume Method for a Propagation in a Normal Direction in a Polyhedron Mesh

An inflow-based gradient is proposed to solve a propagation in a normal direction with a cell-centered finite volume method. The proposed discretization of the magnitude of gradient is an extension of Rouy–Tourin scheme (SIAM J Numer Anal 29:867–884, 1992 ) and Osher–Sethian scheme (J Comput Phys 79...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of scientific computing 2017-07, Vol.72 (1), p.442-465
Hauptverfasser: Hahn, Jooyoung, Mikula, Karol, Frolkovič, Peter, Basara, Branislav
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 465
container_issue 1
container_start_page 442
container_title Journal of scientific computing
container_volume 72
creator Hahn, Jooyoung
Mikula, Karol
Frolkovič, Peter
Basara, Branislav
description An inflow-based gradient is proposed to solve a propagation in a normal direction with a cell-centered finite volume method. The proposed discretization of the magnitude of gradient is an extension of Rouy–Tourin scheme (SIAM J Numer Anal 29:867–884, 1992 ) and Osher–Sethian scheme (J Comput Phys 79:12–49, 1988 ) in two cases; the first is that the proposed scheme can be applied in a polyhedron mesh in three dimensions and the second is that its corresponding form on a regular structured cube mesh uses the second order upwind difference. Considering a practical application in three dimensional mesh, we use the simplest decomposed domains for a parallel computation. Moreover, the implementation is straightforwardly and easily combined with a conventional finite volume code. A higher order of convergence and a recovery of signed distance function from a sparse data are illustrated in numerical examples on hexahedron or polyhedron meshes.
doi_str_mv 10.1007/s10915-017-0364-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918313697</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918313697</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-4df8557cde953fbfbd28797095508b250694ed973023caabf52c7fb0d58adb3b3</originalsourceid><addsrcrecordid>eNp1kMFKAzEQhoMoWKsP4C3gOTrZbDbJUauthVZ7UK8hu0naLdtNTbZI394tFXryNMzwf__Ah9AthXsKIB4SBUU5ASoIsCIn-RkaUC4YEYWi52gAUnIicpFfoquU1gCgpMoGaDltfRN-yJNJzuJJNLZ2bYfHdVt3Dn-FZrdxeO66VbDYh4gNXsSwNUvT1aHFddsf3kLcmAY_19FVp-siNPuVs7Hf5y6trtGFN01yN39ziD7HLx-jVzJ7n0xHjzNSMZl1JLdeci4q6xRnvvSlzaRQAhTnIMuMQ6FyZ5VgkLHKmNLzrBK-BMulsSUr2RDdHXu3MXzvXOr0Ouxi27_UmaKSUVb09BDRY6qKIaXovN7GemPiXlPQB5_66FP3PvXBp857Jjsyqc-2SxdPzf9DvykbeBE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918313697</pqid></control><display><type>article</type><title>Inflow-Based Gradient Finite Volume Method for a Propagation in a Normal Direction in a Polyhedron Mesh</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Hahn, Jooyoung ; Mikula, Karol ; Frolkovič, Peter ; Basara, Branislav</creator><creatorcontrib>Hahn, Jooyoung ; Mikula, Karol ; Frolkovič, Peter ; Basara, Branislav</creatorcontrib><description>An inflow-based gradient is proposed to solve a propagation in a normal direction with a cell-centered finite volume method. The proposed discretization of the magnitude of gradient is an extension of Rouy–Tourin scheme (SIAM J Numer Anal 29:867–884, 1992 ) and Osher–Sethian scheme (J Comput Phys 79:12–49, 1988 ) in two cases; the first is that the proposed scheme can be applied in a polyhedron mesh in three dimensions and the second is that its corresponding form on a regular structured cube mesh uses the second order upwind difference. Considering a practical application in three dimensional mesh, we use the simplest decomposed domains for a parallel computation. Moreover, the implementation is straightforwardly and easily combined with a conventional finite volume code. A higher order of convergence and a recovery of signed distance function from a sparse data are illustrated in numerical examples on hexahedron or polyhedron meshes.</description><identifier>ISSN: 0885-7474</identifier><identifier>EISSN: 1573-7691</identifier><identifier>DOI: 10.1007/s10915-017-0364-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Approximation ; Computational Mathematics and Numerical Analysis ; Finite volume method ; Inflow ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Neighborhoods ; Numerical analysis ; Parallel processing ; Polyhedra ; Propagation ; Theoretical</subject><ispartof>Journal of scientific computing, 2017-07, Vol.72 (1), p.442-465</ispartof><rights>Springer Science+Business Media New York 2017</rights><rights>Springer Science+Business Media New York 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-4df8557cde953fbfbd28797095508b250694ed973023caabf52c7fb0d58adb3b3</citedby><cites>FETCH-LOGICAL-c382t-4df8557cde953fbfbd28797095508b250694ed973023caabf52c7fb0d58adb3b3</cites><orcidid>0000-0002-3561-6943 ; 0000-0003-4357-1009</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10915-017-0364-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918313697?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,777,781,21369,27905,27906,33725,41469,42538,43786,51300,64364,64368,72218</link.rule.ids></links><search><creatorcontrib>Hahn, Jooyoung</creatorcontrib><creatorcontrib>Mikula, Karol</creatorcontrib><creatorcontrib>Frolkovič, Peter</creatorcontrib><creatorcontrib>Basara, Branislav</creatorcontrib><title>Inflow-Based Gradient Finite Volume Method for a Propagation in a Normal Direction in a Polyhedron Mesh</title><title>Journal of scientific computing</title><addtitle>J Sci Comput</addtitle><description>An inflow-based gradient is proposed to solve a propagation in a normal direction with a cell-centered finite volume method. The proposed discretization of the magnitude of gradient is an extension of Rouy–Tourin scheme (SIAM J Numer Anal 29:867–884, 1992 ) and Osher–Sethian scheme (J Comput Phys 79:12–49, 1988 ) in two cases; the first is that the proposed scheme can be applied in a polyhedron mesh in three dimensions and the second is that its corresponding form on a regular structured cube mesh uses the second order upwind difference. Considering a practical application in three dimensional mesh, we use the simplest decomposed domains for a parallel computation. Moreover, the implementation is straightforwardly and easily combined with a conventional finite volume code. A higher order of convergence and a recovery of signed distance function from a sparse data are illustrated in numerical examples on hexahedron or polyhedron meshes.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Finite volume method</subject><subject>Inflow</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Neighborhoods</subject><subject>Numerical analysis</subject><subject>Parallel processing</subject><subject>Polyhedra</subject><subject>Propagation</subject><subject>Theoretical</subject><issn>0885-7474</issn><issn>1573-7691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kMFKAzEQhoMoWKsP4C3gOTrZbDbJUauthVZ7UK8hu0naLdtNTbZI394tFXryNMzwf__Ah9AthXsKIB4SBUU5ASoIsCIn-RkaUC4YEYWi52gAUnIicpFfoquU1gCgpMoGaDltfRN-yJNJzuJJNLZ2bYfHdVt3Dn-FZrdxeO66VbDYh4gNXsSwNUvT1aHFddsf3kLcmAY_19FVp-siNPuVs7Hf5y6trtGFN01yN39ziD7HLx-jVzJ7n0xHjzNSMZl1JLdeci4q6xRnvvSlzaRQAhTnIMuMQ6FyZ5VgkLHKmNLzrBK-BMulsSUr2RDdHXu3MXzvXOr0Ouxi27_UmaKSUVb09BDRY6qKIaXovN7GemPiXlPQB5_66FP3PvXBp857Jjsyqc-2SxdPzf9DvykbeBE</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Hahn, Jooyoung</creator><creator>Mikula, Karol</creator><creator>Frolkovič, Peter</creator><creator>Basara, Branislav</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-3561-6943</orcidid><orcidid>https://orcid.org/0000-0003-4357-1009</orcidid></search><sort><creationdate>20170701</creationdate><title>Inflow-Based Gradient Finite Volume Method for a Propagation in a Normal Direction in a Polyhedron Mesh</title><author>Hahn, Jooyoung ; Mikula, Karol ; Frolkovič, Peter ; Basara, Branislav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-4df8557cde953fbfbd28797095508b250694ed973023caabf52c7fb0d58adb3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Finite volume method</topic><topic>Inflow</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Neighborhoods</topic><topic>Numerical analysis</topic><topic>Parallel processing</topic><topic>Polyhedra</topic><topic>Propagation</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hahn, Jooyoung</creatorcontrib><creatorcontrib>Mikula, Karol</creatorcontrib><creatorcontrib>Frolkovič, Peter</creatorcontrib><creatorcontrib>Basara, Branislav</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hahn, Jooyoung</au><au>Mikula, Karol</au><au>Frolkovič, Peter</au><au>Basara, Branislav</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inflow-Based Gradient Finite Volume Method for a Propagation in a Normal Direction in a Polyhedron Mesh</atitle><jtitle>Journal of scientific computing</jtitle><stitle>J Sci Comput</stitle><date>2017-07-01</date><risdate>2017</risdate><volume>72</volume><issue>1</issue><spage>442</spage><epage>465</epage><pages>442-465</pages><issn>0885-7474</issn><eissn>1573-7691</eissn><abstract>An inflow-based gradient is proposed to solve a propagation in a normal direction with a cell-centered finite volume method. The proposed discretization of the magnitude of gradient is an extension of Rouy–Tourin scheme (SIAM J Numer Anal 29:867–884, 1992 ) and Osher–Sethian scheme (J Comput Phys 79:12–49, 1988 ) in two cases; the first is that the proposed scheme can be applied in a polyhedron mesh in three dimensions and the second is that its corresponding form on a regular structured cube mesh uses the second order upwind difference. Considering a practical application in three dimensional mesh, we use the simplest decomposed domains for a parallel computation. Moreover, the implementation is straightforwardly and easily combined with a conventional finite volume code. A higher order of convergence and a recovery of signed distance function from a sparse data are illustrated in numerical examples on hexahedron or polyhedron meshes.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10915-017-0364-4</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-3561-6943</orcidid><orcidid>https://orcid.org/0000-0003-4357-1009</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0885-7474
ispartof Journal of scientific computing, 2017-07, Vol.72 (1), p.442-465
issn 0885-7474
1573-7691
language eng
recordid cdi_proquest_journals_2918313697
source Springer Nature - Complete Springer Journals; ProQuest Central UK/Ireland; ProQuest Central
subjects Algorithms
Approximation
Computational Mathematics and Numerical Analysis
Finite volume method
Inflow
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Neighborhoods
Numerical analysis
Parallel processing
Polyhedra
Propagation
Theoretical
title Inflow-Based Gradient Finite Volume Method for a Propagation in a Normal Direction in a Polyhedron Mesh
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T05%3A57%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inflow-Based%20Gradient%20Finite%20Volume%20Method%20for%20a%20Propagation%20in%20a%20Normal%20Direction%20in%20a%20Polyhedron%20Mesh&rft.jtitle=Journal%20of%20scientific%20computing&rft.au=Hahn,%20Jooyoung&rft.date=2017-07-01&rft.volume=72&rft.issue=1&rft.spage=442&rft.epage=465&rft.pages=442-465&rft.issn=0885-7474&rft.eissn=1573-7691&rft_id=info:doi/10.1007/s10915-017-0364-4&rft_dat=%3Cproquest_cross%3E2918313697%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918313697&rft_id=info:pmid/&rfr_iscdi=true