H-matrix Accelerated Second Moment Analysis for Potentials with Rough Correlation
We consider the efficient solution of partial differential equations for strongly elliptic operators with constant coefficients and stochastic Dirichlet data by the boundary integral equation method. The computation of the solution’s two-point correlation is well understood if the two-point correlat...
Gespeichert in:
Veröffentlicht in: | Journal of scientific computing 2015-10, Vol.65 (1), p.387-410 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 410 |
---|---|
container_issue | 1 |
container_start_page | 387 |
container_title | Journal of scientific computing |
container_volume | 65 |
creator | Dölz, J. Harbrecht, H. Peters, M. |
description | We consider the efficient solution of partial differential equations for strongly elliptic operators with constant coefficients and stochastic Dirichlet data by the boundary integral equation method. The computation of the solution’s two-point correlation is well understood if the two-point correlation of the Dirichlet data is known and sufficiently smooth. Unfortunately, the problem becomes much more involved in case of roughly correlated data. We will show that the concept of the
H
-matrix arithmetic provides a powerful tool to cope with this problem. By employing a parametric surface representation, we end up with an
H
-matrix arithmetic based on balanced cluster trees. This considerably simplifies the implementation and improves the performance of the
H
-matrix arithmetic. Numerical experiments are provided to validate and quantify the presented methods and algorithms. |
doi_str_mv | 10.1007/s10915-014-9965-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918313239</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918313239</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-fc126009fabf24fa04a1eaa3036a9b2cf9945d55f001d5612e688fb81ebe041c3</originalsourceid><addsrcrecordid>eNp1kE9LAzEUxIMoWKsfwFvAczQv2exujqWoFSr-P4dsNmm3tJuapGi_vSkrePL0YN7MMPwQugR6DZRWNxGoBEEoFETKUhB-hEYgKk6qUsIxGtG6FqQqquIUncW4opTKWrIRepmRjU6h-8YTY-zaBp1si9-s8X2LH_3G9glPer3exy5i5wN-9ilrnV5H_NWlJX71u8UST30Idq1T5_tzdOLy11783jH6uLt9n87I_On-YTqZE8OFTMQZYGVe4XTjWOE0LTRYrTnlpZYNM07KQrRCOEqhFSUwW9a1a2qwjaUFGD5GV0PvNvjPnY1Jrfwu5KlRMQk1B864zC4YXCb4GIN1ahu6jQ57BVQdyKmBnMrk1IGc4jnDhkzM3n5hw1_z_6Efmz5xDA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918313239</pqid></control><display><type>article</type><title>H-matrix Accelerated Second Moment Analysis for Potentials with Rough Correlation</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Dölz, J. ; Harbrecht, H. ; Peters, M.</creator><creatorcontrib>Dölz, J. ; Harbrecht, H. ; Peters, M.</creatorcontrib><description>We consider the efficient solution of partial differential equations for strongly elliptic operators with constant coefficients and stochastic Dirichlet data by the boundary integral equation method. The computation of the solution’s two-point correlation is well understood if the two-point correlation of the Dirichlet data is known and sufficiently smooth. Unfortunately, the problem becomes much more involved in case of roughly correlated data. We will show that the concept of the
H
-matrix arithmetic provides a powerful tool to cope with this problem. By employing a parametric surface representation, we end up with an
H
-matrix arithmetic based on balanced cluster trees. This considerably simplifies the implementation and improves the performance of the
H
-matrix arithmetic. Numerical experiments are provided to validate and quantify the presented methods and algorithms.</description><identifier>ISSN: 0885-7474</identifier><identifier>EISSN: 1573-7691</identifier><identifier>DOI: 10.1007/s10915-014-9965-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Arithmetic ; Boundary element method ; Boundary integral method ; CAD ; Computational Mathematics and Numerical Analysis ; Computer aided design ; Correlation ; Dirichlet problem ; Elliptic functions ; Integral equations ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Operators (mathematics) ; Partial differential equations ; Theoretical</subject><ispartof>Journal of scientific computing, 2015-10, Vol.65 (1), p.387-410</ispartof><rights>Springer Science+Business Media New York 2015</rights><rights>Springer Science+Business Media New York 2015.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-fc126009fabf24fa04a1eaa3036a9b2cf9945d55f001d5612e688fb81ebe041c3</citedby><cites>FETCH-LOGICAL-c359t-fc126009fabf24fa04a1eaa3036a9b2cf9945d55f001d5612e688fb81ebe041c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10915-014-9965-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918313239?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>315,781,785,21393,27929,27930,33749,41493,42562,43810,51324,64390,64394,72474</link.rule.ids></links><search><creatorcontrib>Dölz, J.</creatorcontrib><creatorcontrib>Harbrecht, H.</creatorcontrib><creatorcontrib>Peters, M.</creatorcontrib><title>H-matrix Accelerated Second Moment Analysis for Potentials with Rough Correlation</title><title>Journal of scientific computing</title><addtitle>J Sci Comput</addtitle><description>We consider the efficient solution of partial differential equations for strongly elliptic operators with constant coefficients and stochastic Dirichlet data by the boundary integral equation method. The computation of the solution’s two-point correlation is well understood if the two-point correlation of the Dirichlet data is known and sufficiently smooth. Unfortunately, the problem becomes much more involved in case of roughly correlated data. We will show that the concept of the
H
-matrix arithmetic provides a powerful tool to cope with this problem. By employing a parametric surface representation, we end up with an
H
-matrix arithmetic based on balanced cluster trees. This considerably simplifies the implementation and improves the performance of the
H
-matrix arithmetic. Numerical experiments are provided to validate and quantify the presented methods and algorithms.</description><subject>Algorithms</subject><subject>Arithmetic</subject><subject>Boundary element method</subject><subject>Boundary integral method</subject><subject>CAD</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Computer aided design</subject><subject>Correlation</subject><subject>Dirichlet problem</subject><subject>Elliptic functions</subject><subject>Integral equations</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators (mathematics)</subject><subject>Partial differential equations</subject><subject>Theoretical</subject><issn>0885-7474</issn><issn>1573-7691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE9LAzEUxIMoWKsfwFvAczQv2exujqWoFSr-P4dsNmm3tJuapGi_vSkrePL0YN7MMPwQugR6DZRWNxGoBEEoFETKUhB-hEYgKk6qUsIxGtG6FqQqquIUncW4opTKWrIRepmRjU6h-8YTY-zaBp1si9-s8X2LH_3G9glPer3exy5i5wN-9ilrnV5H_NWlJX71u8UST30Idq1T5_tzdOLy11783jH6uLt9n87I_On-YTqZE8OFTMQZYGVe4XTjWOE0LTRYrTnlpZYNM07KQrRCOEqhFSUwW9a1a2qwjaUFGD5GV0PvNvjPnY1Jrfwu5KlRMQk1B864zC4YXCb4GIN1ahu6jQ57BVQdyKmBnMrk1IGc4jnDhkzM3n5hw1_z_6Efmz5xDA</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Dölz, J.</creator><creator>Harbrecht, H.</creator><creator>Peters, M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20151001</creationdate><title>H-matrix Accelerated Second Moment Analysis for Potentials with Rough Correlation</title><author>Dölz, J. ; Harbrecht, H. ; Peters, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-fc126009fabf24fa04a1eaa3036a9b2cf9945d55f001d5612e688fb81ebe041c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Arithmetic</topic><topic>Boundary element method</topic><topic>Boundary integral method</topic><topic>CAD</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Computer aided design</topic><topic>Correlation</topic><topic>Dirichlet problem</topic><topic>Elliptic functions</topic><topic>Integral equations</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators (mathematics)</topic><topic>Partial differential equations</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dölz, J.</creatorcontrib><creatorcontrib>Harbrecht, H.</creatorcontrib><creatorcontrib>Peters, M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dölz, J.</au><au>Harbrecht, H.</au><au>Peters, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>H-matrix Accelerated Second Moment Analysis for Potentials with Rough Correlation</atitle><jtitle>Journal of scientific computing</jtitle><stitle>J Sci Comput</stitle><date>2015-10-01</date><risdate>2015</risdate><volume>65</volume><issue>1</issue><spage>387</spage><epage>410</epage><pages>387-410</pages><issn>0885-7474</issn><eissn>1573-7691</eissn><abstract>We consider the efficient solution of partial differential equations for strongly elliptic operators with constant coefficients and stochastic Dirichlet data by the boundary integral equation method. The computation of the solution’s two-point correlation is well understood if the two-point correlation of the Dirichlet data is known and sufficiently smooth. Unfortunately, the problem becomes much more involved in case of roughly correlated data. We will show that the concept of the
H
-matrix arithmetic provides a powerful tool to cope with this problem. By employing a parametric surface representation, we end up with an
H
-matrix arithmetic based on balanced cluster trees. This considerably simplifies the implementation and improves the performance of the
H
-matrix arithmetic. Numerical experiments are provided to validate and quantify the presented methods and algorithms.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10915-014-9965-3</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-7474 |
ispartof | Journal of scientific computing, 2015-10, Vol.65 (1), p.387-410 |
issn | 0885-7474 1573-7691 |
language | eng |
recordid | cdi_proquest_journals_2918313239 |
source | ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Algorithms Arithmetic Boundary element method Boundary integral method CAD Computational Mathematics and Numerical Analysis Computer aided design Correlation Dirichlet problem Elliptic functions Integral equations Mathematical and Computational Engineering Mathematical and Computational Physics Mathematics Mathematics and Statistics Operators (mathematics) Partial differential equations Theoretical |
title | H-matrix Accelerated Second Moment Analysis for Potentials with Rough Correlation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T05%3A43%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=H-matrix%20Accelerated%20Second%20Moment%20Analysis%20for%20Potentials%20with%20Rough%20Correlation&rft.jtitle=Journal%20of%20scientific%20computing&rft.au=D%C3%B6lz,%20J.&rft.date=2015-10-01&rft.volume=65&rft.issue=1&rft.spage=387&rft.epage=410&rft.pages=387-410&rft.issn=0885-7474&rft.eissn=1573-7691&rft_id=info:doi/10.1007/s10915-014-9965-3&rft_dat=%3Cproquest_cross%3E2918313239%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918313239&rft_id=info:pmid/&rfr_iscdi=true |