H-matrix Accelerated Second Moment Analysis for Potentials with Rough Correlation

We consider the efficient solution of partial differential equations for strongly elliptic operators with constant coefficients and stochastic Dirichlet data by the boundary integral equation method. The computation of the solution’s two-point correlation is well understood if the two-point correlat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of scientific computing 2015-10, Vol.65 (1), p.387-410
Hauptverfasser: Dölz, J., Harbrecht, H., Peters, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 410
container_issue 1
container_start_page 387
container_title Journal of scientific computing
container_volume 65
creator Dölz, J.
Harbrecht, H.
Peters, M.
description We consider the efficient solution of partial differential equations for strongly elliptic operators with constant coefficients and stochastic Dirichlet data by the boundary integral equation method. The computation of the solution’s two-point correlation is well understood if the two-point correlation of the Dirichlet data is known and sufficiently smooth. Unfortunately, the problem becomes much more involved in case of roughly correlated data. We will show that the concept of the H -matrix arithmetic provides a powerful tool to cope with this problem. By employing a parametric surface representation, we end up with an H -matrix arithmetic based on balanced cluster trees. This considerably simplifies the implementation and improves the performance of the H -matrix arithmetic. Numerical experiments are provided to validate and quantify the presented methods and algorithms.
doi_str_mv 10.1007/s10915-014-9965-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918313239</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918313239</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-fc126009fabf24fa04a1eaa3036a9b2cf9945d55f001d5612e688fb81ebe041c3</originalsourceid><addsrcrecordid>eNp1kE9LAzEUxIMoWKsfwFvAczQv2exujqWoFSr-P4dsNmm3tJuapGi_vSkrePL0YN7MMPwQugR6DZRWNxGoBEEoFETKUhB-hEYgKk6qUsIxGtG6FqQqquIUncW4opTKWrIRepmRjU6h-8YTY-zaBp1si9-s8X2LH_3G9glPer3exy5i5wN-9ilrnV5H_NWlJX71u8UST30Idq1T5_tzdOLy11783jH6uLt9n87I_On-YTqZE8OFTMQZYGVe4XTjWOE0LTRYrTnlpZYNM07KQrRCOEqhFSUwW9a1a2qwjaUFGD5GV0PvNvjPnY1Jrfwu5KlRMQk1B864zC4YXCb4GIN1ahu6jQ57BVQdyKmBnMrk1IGc4jnDhkzM3n5hw1_z_6Efmz5xDA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918313239</pqid></control><display><type>article</type><title>H-matrix Accelerated Second Moment Analysis for Potentials with Rough Correlation</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Dölz, J. ; Harbrecht, H. ; Peters, M.</creator><creatorcontrib>Dölz, J. ; Harbrecht, H. ; Peters, M.</creatorcontrib><description>We consider the efficient solution of partial differential equations for strongly elliptic operators with constant coefficients and stochastic Dirichlet data by the boundary integral equation method. The computation of the solution’s two-point correlation is well understood if the two-point correlation of the Dirichlet data is known and sufficiently smooth. Unfortunately, the problem becomes much more involved in case of roughly correlated data. We will show that the concept of the H -matrix arithmetic provides a powerful tool to cope with this problem. By employing a parametric surface representation, we end up with an H -matrix arithmetic based on balanced cluster trees. This considerably simplifies the implementation and improves the performance of the H -matrix arithmetic. Numerical experiments are provided to validate and quantify the presented methods and algorithms.</description><identifier>ISSN: 0885-7474</identifier><identifier>EISSN: 1573-7691</identifier><identifier>DOI: 10.1007/s10915-014-9965-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Arithmetic ; Boundary element method ; Boundary integral method ; CAD ; Computational Mathematics and Numerical Analysis ; Computer aided design ; Correlation ; Dirichlet problem ; Elliptic functions ; Integral equations ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Operators (mathematics) ; Partial differential equations ; Theoretical</subject><ispartof>Journal of scientific computing, 2015-10, Vol.65 (1), p.387-410</ispartof><rights>Springer Science+Business Media New York 2015</rights><rights>Springer Science+Business Media New York 2015.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-fc126009fabf24fa04a1eaa3036a9b2cf9945d55f001d5612e688fb81ebe041c3</citedby><cites>FETCH-LOGICAL-c359t-fc126009fabf24fa04a1eaa3036a9b2cf9945d55f001d5612e688fb81ebe041c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10915-014-9965-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918313239?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>315,781,785,21393,27929,27930,33749,41493,42562,43810,51324,64390,64394,72474</link.rule.ids></links><search><creatorcontrib>Dölz, J.</creatorcontrib><creatorcontrib>Harbrecht, H.</creatorcontrib><creatorcontrib>Peters, M.</creatorcontrib><title>H-matrix Accelerated Second Moment Analysis for Potentials with Rough Correlation</title><title>Journal of scientific computing</title><addtitle>J Sci Comput</addtitle><description>We consider the efficient solution of partial differential equations for strongly elliptic operators with constant coefficients and stochastic Dirichlet data by the boundary integral equation method. The computation of the solution’s two-point correlation is well understood if the two-point correlation of the Dirichlet data is known and sufficiently smooth. Unfortunately, the problem becomes much more involved in case of roughly correlated data. We will show that the concept of the H -matrix arithmetic provides a powerful tool to cope with this problem. By employing a parametric surface representation, we end up with an H -matrix arithmetic based on balanced cluster trees. This considerably simplifies the implementation and improves the performance of the H -matrix arithmetic. Numerical experiments are provided to validate and quantify the presented methods and algorithms.</description><subject>Algorithms</subject><subject>Arithmetic</subject><subject>Boundary element method</subject><subject>Boundary integral method</subject><subject>CAD</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Computer aided design</subject><subject>Correlation</subject><subject>Dirichlet problem</subject><subject>Elliptic functions</subject><subject>Integral equations</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators (mathematics)</subject><subject>Partial differential equations</subject><subject>Theoretical</subject><issn>0885-7474</issn><issn>1573-7691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE9LAzEUxIMoWKsfwFvAczQv2exujqWoFSr-P4dsNmm3tJuapGi_vSkrePL0YN7MMPwQugR6DZRWNxGoBEEoFETKUhB-hEYgKk6qUsIxGtG6FqQqquIUncW4opTKWrIRepmRjU6h-8YTY-zaBp1si9-s8X2LH_3G9glPer3exy5i5wN-9ilrnV5H_NWlJX71u8UST30Idq1T5_tzdOLy11783jH6uLt9n87I_On-YTqZE8OFTMQZYGVe4XTjWOE0LTRYrTnlpZYNM07KQrRCOEqhFSUwW9a1a2qwjaUFGD5GV0PvNvjPnY1Jrfwu5KlRMQk1B864zC4YXCb4GIN1ahu6jQ57BVQdyKmBnMrk1IGc4jnDhkzM3n5hw1_z_6Efmz5xDA</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Dölz, J.</creator><creator>Harbrecht, H.</creator><creator>Peters, M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20151001</creationdate><title>H-matrix Accelerated Second Moment Analysis for Potentials with Rough Correlation</title><author>Dölz, J. ; Harbrecht, H. ; Peters, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-fc126009fabf24fa04a1eaa3036a9b2cf9945d55f001d5612e688fb81ebe041c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Arithmetic</topic><topic>Boundary element method</topic><topic>Boundary integral method</topic><topic>CAD</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Computer aided design</topic><topic>Correlation</topic><topic>Dirichlet problem</topic><topic>Elliptic functions</topic><topic>Integral equations</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators (mathematics)</topic><topic>Partial differential equations</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dölz, J.</creatorcontrib><creatorcontrib>Harbrecht, H.</creatorcontrib><creatorcontrib>Peters, M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dölz, J.</au><au>Harbrecht, H.</au><au>Peters, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>H-matrix Accelerated Second Moment Analysis for Potentials with Rough Correlation</atitle><jtitle>Journal of scientific computing</jtitle><stitle>J Sci Comput</stitle><date>2015-10-01</date><risdate>2015</risdate><volume>65</volume><issue>1</issue><spage>387</spage><epage>410</epage><pages>387-410</pages><issn>0885-7474</issn><eissn>1573-7691</eissn><abstract>We consider the efficient solution of partial differential equations for strongly elliptic operators with constant coefficients and stochastic Dirichlet data by the boundary integral equation method. The computation of the solution’s two-point correlation is well understood if the two-point correlation of the Dirichlet data is known and sufficiently smooth. Unfortunately, the problem becomes much more involved in case of roughly correlated data. We will show that the concept of the H -matrix arithmetic provides a powerful tool to cope with this problem. By employing a parametric surface representation, we end up with an H -matrix arithmetic based on balanced cluster trees. This considerably simplifies the implementation and improves the performance of the H -matrix arithmetic. Numerical experiments are provided to validate and quantify the presented methods and algorithms.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10915-014-9965-3</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0885-7474
ispartof Journal of scientific computing, 2015-10, Vol.65 (1), p.387-410
issn 0885-7474
1573-7691
language eng
recordid cdi_proquest_journals_2918313239
source ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Algorithms
Arithmetic
Boundary element method
Boundary integral method
CAD
Computational Mathematics and Numerical Analysis
Computer aided design
Correlation
Dirichlet problem
Elliptic functions
Integral equations
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Operators (mathematics)
Partial differential equations
Theoretical
title H-matrix Accelerated Second Moment Analysis for Potentials with Rough Correlation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T05%3A43%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=H-matrix%20Accelerated%20Second%20Moment%20Analysis%20for%20Potentials%20with%20Rough%20Correlation&rft.jtitle=Journal%20of%20scientific%20computing&rft.au=D%C3%B6lz,%20J.&rft.date=2015-10-01&rft.volume=65&rft.issue=1&rft.spage=387&rft.epage=410&rft.pages=387-410&rft.issn=0885-7474&rft.eissn=1573-7691&rft_id=info:doi/10.1007/s10915-014-9965-3&rft_dat=%3Cproquest_cross%3E2918313239%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918313239&rft_id=info:pmid/&rfr_iscdi=true