Direct Solvers for the Biharmonic Eigenvalue Problems Using Legendre Polynomials

We propose an efficient algorithm based on the Legendre–Galerkin approximations for the direct solution of the biharmonic eigenvalue problems with the boundary conditions of the clamped plate, the simply supported plate and the Cahn–Hilliard type. The key point to the efficiency of our algorithm is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of scientific computing 2017-03, Vol.70 (3), p.1030-1041
Hauptverfasser: Chen, Lizhen, An, Jing, Zhuang, Qingqu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1041
container_issue 3
container_start_page 1030
container_title Journal of scientific computing
container_volume 70
creator Chen, Lizhen
An, Jing
Zhuang, Qingqu
description We propose an efficient algorithm based on the Legendre–Galerkin approximations for the direct solution of the biharmonic eigenvalue problems with the boundary conditions of the clamped plate, the simply supported plate and the Cahn–Hilliard type. The key point to the efficiency of our algorithm is to construct appropriate basis functions which satisfying the corresponding boundary condition automatically and leading to linear systems with sparse matrices for the discrete variational formulations. In addition, the error estimate was driven by the minimax principle. Finally, the numerical results demonstrate the accuracy and the efficiency of this method.
doi_str_mv 10.1007/s10915-016-0277-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918312933</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918312933</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-ea88c40517e0a44c1436aa735b618b7030a8ad3350f4bd540fb508ee50d882883</originalsourceid><addsrcrecordid>eNp1kF9LwzAUxYMoOKcfwLeAz9GbJmnSR53zDwwc6J5D2qZbRtvMpBvs25tRwSefDpx7zrnwQ-iWwj0FkA-RQkEFAZoTyKQk8gxNqJCMyLyg52gCSgkiueSX6CrGLQAUqsgmaPnsgq0G_Onbgw0RNz7gYWPxk9uY0PneVXju1rY_mHZv8TL4srVdxKvo-jVe2HSpQ_J9e-x950wbr9FFk8Te_OoUrV7mX7M3svh4fZ89LkjFaD4Qa5SqOAgqLRjOK8pZboxkosypKiUwMMrUjAloeFkLDk0pQFkroFYqU4pN0d24uwv-e2_joLd-H_r0UmcFVYxmBWMpRcdUFXyMwTZ6F1xnwlFT0CdwegSnEzh9Aqdl6mRjJ6Zsv7bhb_n_0g-M9W_O</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918312933</pqid></control><display><type>article</type><title>Direct Solvers for the Biharmonic Eigenvalue Problems Using Legendre Polynomials</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central</source><creator>Chen, Lizhen ; An, Jing ; Zhuang, Qingqu</creator><creatorcontrib>Chen, Lizhen ; An, Jing ; Zhuang, Qingqu</creatorcontrib><description>We propose an efficient algorithm based on the Legendre–Galerkin approximations for the direct solution of the biharmonic eigenvalue problems with the boundary conditions of the clamped plate, the simply supported plate and the Cahn–Hilliard type. The key point to the efficiency of our algorithm is to construct appropriate basis functions which satisfying the corresponding boundary condition automatically and leading to linear systems with sparse matrices for the discrete variational formulations. In addition, the error estimate was driven by the minimax principle. Finally, the numerical results demonstrate the accuracy and the efficiency of this method.</description><identifier>ISSN: 0885-7474</identifier><identifier>EISSN: 1573-7691</identifier><identifier>DOI: 10.1007/s10915-016-0277-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Approximation ; Basis functions ; Boundary conditions ; Computational Mathematics and Numerical Analysis ; Eigenvalues ; Linear systems ; Mathematical analysis ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Methods ; Minimax technique ; Partial differential equations ; Polynomials ; Sparse matrices ; Theoretical</subject><ispartof>Journal of scientific computing, 2017-03, Vol.70 (3), p.1030-1041</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>Springer Science+Business Media New York 2016.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-ea88c40517e0a44c1436aa735b618b7030a8ad3350f4bd540fb508ee50d882883</citedby><cites>FETCH-LOGICAL-c316t-ea88c40517e0a44c1436aa735b618b7030a8ad3350f4bd540fb508ee50d882883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10915-016-0277-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918312933?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Chen, Lizhen</creatorcontrib><creatorcontrib>An, Jing</creatorcontrib><creatorcontrib>Zhuang, Qingqu</creatorcontrib><title>Direct Solvers for the Biharmonic Eigenvalue Problems Using Legendre Polynomials</title><title>Journal of scientific computing</title><addtitle>J Sci Comput</addtitle><description>We propose an efficient algorithm based on the Legendre–Galerkin approximations for the direct solution of the biharmonic eigenvalue problems with the boundary conditions of the clamped plate, the simply supported plate and the Cahn–Hilliard type. The key point to the efficiency of our algorithm is to construct appropriate basis functions which satisfying the corresponding boundary condition automatically and leading to linear systems with sparse matrices for the discrete variational formulations. In addition, the error estimate was driven by the minimax principle. Finally, the numerical results demonstrate the accuracy and the efficiency of this method.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Basis functions</subject><subject>Boundary conditions</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Eigenvalues</subject><subject>Linear systems</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Methods</subject><subject>Minimax technique</subject><subject>Partial differential equations</subject><subject>Polynomials</subject><subject>Sparse matrices</subject><subject>Theoretical</subject><issn>0885-7474</issn><issn>1573-7691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kF9LwzAUxYMoOKcfwLeAz9GbJmnSR53zDwwc6J5D2qZbRtvMpBvs25tRwSefDpx7zrnwQ-iWwj0FkA-RQkEFAZoTyKQk8gxNqJCMyLyg52gCSgkiueSX6CrGLQAUqsgmaPnsgq0G_Onbgw0RNz7gYWPxk9uY0PneVXju1rY_mHZv8TL4srVdxKvo-jVe2HSpQ_J9e-x950wbr9FFk8Te_OoUrV7mX7M3svh4fZ89LkjFaD4Qa5SqOAgqLRjOK8pZboxkosypKiUwMMrUjAloeFkLDk0pQFkroFYqU4pN0d24uwv-e2_joLd-H_r0UmcFVYxmBWMpRcdUFXyMwTZ6F1xnwlFT0CdwegSnEzh9Aqdl6mRjJ6Zsv7bhb_n_0g-M9W_O</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Chen, Lizhen</creator><creator>An, Jing</creator><creator>Zhuang, Qingqu</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20170301</creationdate><title>Direct Solvers for the Biharmonic Eigenvalue Problems Using Legendre Polynomials</title><author>Chen, Lizhen ; An, Jing ; Zhuang, Qingqu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-ea88c40517e0a44c1436aa735b618b7030a8ad3350f4bd540fb508ee50d882883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Basis functions</topic><topic>Boundary conditions</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Eigenvalues</topic><topic>Linear systems</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Methods</topic><topic>Minimax technique</topic><topic>Partial differential equations</topic><topic>Polynomials</topic><topic>Sparse matrices</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Lizhen</creatorcontrib><creatorcontrib>An, Jing</creatorcontrib><creatorcontrib>Zhuang, Qingqu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Lizhen</au><au>An, Jing</au><au>Zhuang, Qingqu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct Solvers for the Biharmonic Eigenvalue Problems Using Legendre Polynomials</atitle><jtitle>Journal of scientific computing</jtitle><stitle>J Sci Comput</stitle><date>2017-03-01</date><risdate>2017</risdate><volume>70</volume><issue>3</issue><spage>1030</spage><epage>1041</epage><pages>1030-1041</pages><issn>0885-7474</issn><eissn>1573-7691</eissn><abstract>We propose an efficient algorithm based on the Legendre–Galerkin approximations for the direct solution of the biharmonic eigenvalue problems with the boundary conditions of the clamped plate, the simply supported plate and the Cahn–Hilliard type. The key point to the efficiency of our algorithm is to construct appropriate basis functions which satisfying the corresponding boundary condition automatically and leading to linear systems with sparse matrices for the discrete variational formulations. In addition, the error estimate was driven by the minimax principle. Finally, the numerical results demonstrate the accuracy and the efficiency of this method.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10915-016-0277-7</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0885-7474
ispartof Journal of scientific computing, 2017-03, Vol.70 (3), p.1030-1041
issn 0885-7474
1573-7691
language eng
recordid cdi_proquest_journals_2918312933
source Springer Nature - Complete Springer Journals; ProQuest Central
subjects Algorithms
Approximation
Basis functions
Boundary conditions
Computational Mathematics and Numerical Analysis
Eigenvalues
Linear systems
Mathematical analysis
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Methods
Minimax technique
Partial differential equations
Polynomials
Sparse matrices
Theoretical
title Direct Solvers for the Biharmonic Eigenvalue Problems Using Legendre Polynomials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T21%3A38%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20Solvers%20for%20the%20Biharmonic%20Eigenvalue%20Problems%20Using%20Legendre%20Polynomials&rft.jtitle=Journal%20of%20scientific%20computing&rft.au=Chen,%20Lizhen&rft.date=2017-03-01&rft.volume=70&rft.issue=3&rft.spage=1030&rft.epage=1041&rft.pages=1030-1041&rft.issn=0885-7474&rft.eissn=1573-7691&rft_id=info:doi/10.1007/s10915-016-0277-7&rft_dat=%3Cproquest_cross%3E2918312933%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918312933&rft_id=info:pmid/&rfr_iscdi=true