Direct Solvers for the Biharmonic Eigenvalue Problems Using Legendre Polynomials
We propose an efficient algorithm based on the Legendre–Galerkin approximations for the direct solution of the biharmonic eigenvalue problems with the boundary conditions of the clamped plate, the simply supported plate and the Cahn–Hilliard type. The key point to the efficiency of our algorithm is...
Gespeichert in:
Veröffentlicht in: | Journal of scientific computing 2017-03, Vol.70 (3), p.1030-1041 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1041 |
---|---|
container_issue | 3 |
container_start_page | 1030 |
container_title | Journal of scientific computing |
container_volume | 70 |
creator | Chen, Lizhen An, Jing Zhuang, Qingqu |
description | We propose an efficient algorithm based on the Legendre–Galerkin approximations for the direct solution of the biharmonic eigenvalue problems with the boundary conditions of the clamped plate, the simply supported plate and the Cahn–Hilliard type. The key point to the efficiency of our algorithm is to construct appropriate basis functions which satisfying the corresponding boundary condition automatically and leading to linear systems with sparse matrices for the discrete variational formulations. In addition, the error estimate was driven by the minimax principle. Finally, the numerical results demonstrate the accuracy and the efficiency of this method. |
doi_str_mv | 10.1007/s10915-016-0277-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918312933</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918312933</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-ea88c40517e0a44c1436aa735b618b7030a8ad3350f4bd540fb508ee50d882883</originalsourceid><addsrcrecordid>eNp1kF9LwzAUxYMoOKcfwLeAz9GbJmnSR53zDwwc6J5D2qZbRtvMpBvs25tRwSefDpx7zrnwQ-iWwj0FkA-RQkEFAZoTyKQk8gxNqJCMyLyg52gCSgkiueSX6CrGLQAUqsgmaPnsgq0G_Onbgw0RNz7gYWPxk9uY0PneVXju1rY_mHZv8TL4srVdxKvo-jVe2HSpQ_J9e-x950wbr9FFk8Te_OoUrV7mX7M3svh4fZ89LkjFaD4Qa5SqOAgqLRjOK8pZboxkosypKiUwMMrUjAloeFkLDk0pQFkroFYqU4pN0d24uwv-e2_joLd-H_r0UmcFVYxmBWMpRcdUFXyMwTZ6F1xnwlFT0CdwegSnEzh9Aqdl6mRjJ6Zsv7bhb_n_0g-M9W_O</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918312933</pqid></control><display><type>article</type><title>Direct Solvers for the Biharmonic Eigenvalue Problems Using Legendre Polynomials</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central</source><creator>Chen, Lizhen ; An, Jing ; Zhuang, Qingqu</creator><creatorcontrib>Chen, Lizhen ; An, Jing ; Zhuang, Qingqu</creatorcontrib><description>We propose an efficient algorithm based on the Legendre–Galerkin approximations for the direct solution of the biharmonic eigenvalue problems with the boundary conditions of the clamped plate, the simply supported plate and the Cahn–Hilliard type. The key point to the efficiency of our algorithm is to construct appropriate basis functions which satisfying the corresponding boundary condition automatically and leading to linear systems with sparse matrices for the discrete variational formulations. In addition, the error estimate was driven by the minimax principle. Finally, the numerical results demonstrate the accuracy and the efficiency of this method.</description><identifier>ISSN: 0885-7474</identifier><identifier>EISSN: 1573-7691</identifier><identifier>DOI: 10.1007/s10915-016-0277-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Approximation ; Basis functions ; Boundary conditions ; Computational Mathematics and Numerical Analysis ; Eigenvalues ; Linear systems ; Mathematical analysis ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Methods ; Minimax technique ; Partial differential equations ; Polynomials ; Sparse matrices ; Theoretical</subject><ispartof>Journal of scientific computing, 2017-03, Vol.70 (3), p.1030-1041</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>Springer Science+Business Media New York 2016.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-ea88c40517e0a44c1436aa735b618b7030a8ad3350f4bd540fb508ee50d882883</citedby><cites>FETCH-LOGICAL-c316t-ea88c40517e0a44c1436aa735b618b7030a8ad3350f4bd540fb508ee50d882883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10915-016-0277-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918312933?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Chen, Lizhen</creatorcontrib><creatorcontrib>An, Jing</creatorcontrib><creatorcontrib>Zhuang, Qingqu</creatorcontrib><title>Direct Solvers for the Biharmonic Eigenvalue Problems Using Legendre Polynomials</title><title>Journal of scientific computing</title><addtitle>J Sci Comput</addtitle><description>We propose an efficient algorithm based on the Legendre–Galerkin approximations for the direct solution of the biharmonic eigenvalue problems with the boundary conditions of the clamped plate, the simply supported plate and the Cahn–Hilliard type. The key point to the efficiency of our algorithm is to construct appropriate basis functions which satisfying the corresponding boundary condition automatically and leading to linear systems with sparse matrices for the discrete variational formulations. In addition, the error estimate was driven by the minimax principle. Finally, the numerical results demonstrate the accuracy and the efficiency of this method.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Basis functions</subject><subject>Boundary conditions</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Eigenvalues</subject><subject>Linear systems</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Methods</subject><subject>Minimax technique</subject><subject>Partial differential equations</subject><subject>Polynomials</subject><subject>Sparse matrices</subject><subject>Theoretical</subject><issn>0885-7474</issn><issn>1573-7691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kF9LwzAUxYMoOKcfwLeAz9GbJmnSR53zDwwc6J5D2qZbRtvMpBvs25tRwSefDpx7zrnwQ-iWwj0FkA-RQkEFAZoTyKQk8gxNqJCMyLyg52gCSgkiueSX6CrGLQAUqsgmaPnsgq0G_Onbgw0RNz7gYWPxk9uY0PneVXju1rY_mHZv8TL4srVdxKvo-jVe2HSpQ_J9e-x950wbr9FFk8Te_OoUrV7mX7M3svh4fZ89LkjFaD4Qa5SqOAgqLRjOK8pZboxkosypKiUwMMrUjAloeFkLDk0pQFkroFYqU4pN0d24uwv-e2_joLd-H_r0UmcFVYxmBWMpRcdUFXyMwTZ6F1xnwlFT0CdwegSnEzh9Aqdl6mRjJ6Zsv7bhb_n_0g-M9W_O</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Chen, Lizhen</creator><creator>An, Jing</creator><creator>Zhuang, Qingqu</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20170301</creationdate><title>Direct Solvers for the Biharmonic Eigenvalue Problems Using Legendre Polynomials</title><author>Chen, Lizhen ; An, Jing ; Zhuang, Qingqu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-ea88c40517e0a44c1436aa735b618b7030a8ad3350f4bd540fb508ee50d882883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Basis functions</topic><topic>Boundary conditions</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Eigenvalues</topic><topic>Linear systems</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Methods</topic><topic>Minimax technique</topic><topic>Partial differential equations</topic><topic>Polynomials</topic><topic>Sparse matrices</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Lizhen</creatorcontrib><creatorcontrib>An, Jing</creatorcontrib><creatorcontrib>Zhuang, Qingqu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Lizhen</au><au>An, Jing</au><au>Zhuang, Qingqu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct Solvers for the Biharmonic Eigenvalue Problems Using Legendre Polynomials</atitle><jtitle>Journal of scientific computing</jtitle><stitle>J Sci Comput</stitle><date>2017-03-01</date><risdate>2017</risdate><volume>70</volume><issue>3</issue><spage>1030</spage><epage>1041</epage><pages>1030-1041</pages><issn>0885-7474</issn><eissn>1573-7691</eissn><abstract>We propose an efficient algorithm based on the Legendre–Galerkin approximations for the direct solution of the biharmonic eigenvalue problems with the boundary conditions of the clamped plate, the simply supported plate and the Cahn–Hilliard type. The key point to the efficiency of our algorithm is to construct appropriate basis functions which satisfying the corresponding boundary condition automatically and leading to linear systems with sparse matrices for the discrete variational formulations. In addition, the error estimate was driven by the minimax principle. Finally, the numerical results demonstrate the accuracy and the efficiency of this method.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10915-016-0277-7</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-7474 |
ispartof | Journal of scientific computing, 2017-03, Vol.70 (3), p.1030-1041 |
issn | 0885-7474 1573-7691 |
language | eng |
recordid | cdi_proquest_journals_2918312933 |
source | Springer Nature - Complete Springer Journals; ProQuest Central |
subjects | Algorithms Approximation Basis functions Boundary conditions Computational Mathematics and Numerical Analysis Eigenvalues Linear systems Mathematical analysis Mathematical and Computational Engineering Mathematical and Computational Physics Mathematics Mathematics and Statistics Methods Minimax technique Partial differential equations Polynomials Sparse matrices Theoretical |
title | Direct Solvers for the Biharmonic Eigenvalue Problems Using Legendre Polynomials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T21%3A38%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20Solvers%20for%20the%20Biharmonic%20Eigenvalue%20Problems%20Using%20Legendre%20Polynomials&rft.jtitle=Journal%20of%20scientific%20computing&rft.au=Chen,%20Lizhen&rft.date=2017-03-01&rft.volume=70&rft.issue=3&rft.spage=1030&rft.epage=1041&rft.pages=1030-1041&rft.issn=0885-7474&rft.eissn=1573-7691&rft_id=info:doi/10.1007/s10915-016-0277-7&rft_dat=%3Cproquest_cross%3E2918312933%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918312933&rft_id=info:pmid/&rfr_iscdi=true |