Divergence-Free H(div)-FEM for Time-Dependent Incompressible Flows with Applications to High Reynolds Number Vortex Dynamics

In this article, we consider exactly divergence-free H (div)-conforming finite element methods for time-dependent incompressible viscous flow problems. This is an extension of previous research concerning divergence-free H 1 -conforming methods. For the linearised Oseen case, the first semi-discrete...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of scientific computing 2018-05, Vol.75 (2), p.830-858
Hauptverfasser: Schroeder, Philipp W., Lube, Gert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 858
container_issue 2
container_start_page 830
container_title Journal of scientific computing
container_volume 75
creator Schroeder, Philipp W.
Lube, Gert
description In this article, we consider exactly divergence-free H (div)-conforming finite element methods for time-dependent incompressible viscous flow problems. This is an extension of previous research concerning divergence-free H 1 -conforming methods. For the linearised Oseen case, the first semi-discrete numerical analysis for time-dependent flows is presented whereby special emphasis is put on pressure- and Reynolds-semi-robustness. For convection-dominated problems, the proposed method relies on a velocity jump upwind stabilisation which is not gradient-based. Complementing the theoretical results, H (div)-FEM are applied to the simulation of full nonlinear Navier–Stokes problems. Focussing on dynamic high Reynolds number examples with vortical structures, the proposed method proves to be capable of reliably handling the planar lattice flow problem, Kelvin–Helmholtz instabilities and freely decaying two-dimensional turbulence.
doi_str_mv 10.1007/s10915-017-0561-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918312931</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918312931</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-3cf69fe1249f26f8910e90bbe4bb32dcff159446fe8ee68a7102a8385c732bae3</originalsourceid><addsrcrecordid>eNp1kEtLJDEURsOgMO3jB8wu4EYX0dykHslSbNsWdAYGnW2oSt-0kaqkTKp1GvzxdtOCK1d3c8534RDyC_g5cF5fZOAaSsahZrysgMEPMoGylqyuNOyRCVeqZHVRFz_JQc7PnHOttJiQ96l_xbTEYJHNEiKdny786xmbXd9TFxN98D2yKQ4YFhhGehts7IeEOfu2Qzrr4lumb358opfD0HnbjD6GTMdI5375RP_iOsRukenvVd9iov9iGvE_na5D03ubj8i-a7qMx5_3kDzOrh-u5uzuz83t1eUdsxKqkUnrKu0QRKGdqJzSwFHztsWibaVYWOeg1EVROVSIlWpq4KJRUpW2lqJtUB6Sk93ukOLLCvNonuMqhc1LIzQoCUJL2FCwo2yKOSd0Zki-b9LaADfbyGYX2Wwim21ks3XEzskbNiwxfS1_L30ANxyABg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918312931</pqid></control><display><type>article</type><title>Divergence-Free H(div)-FEM for Time-Dependent Incompressible Flows with Applications to High Reynolds Number Vortex Dynamics</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Schroeder, Philipp W. ; Lube, Gert</creator><creatorcontrib>Schroeder, Philipp W. ; Lube, Gert</creatorcontrib><description>In this article, we consider exactly divergence-free H (div)-conforming finite element methods for time-dependent incompressible viscous flow problems. This is an extension of previous research concerning divergence-free H 1 -conforming methods. For the linearised Oseen case, the first semi-discrete numerical analysis for time-dependent flows is presented whereby special emphasis is put on pressure- and Reynolds-semi-robustness. For convection-dominated problems, the proposed method relies on a velocity jump upwind stabilisation which is not gradient-based. Complementing the theoretical results, H (div)-FEM are applied to the simulation of full nonlinear Navier–Stokes problems. Focussing on dynamic high Reynolds number examples with vortical structures, the proposed method proves to be capable of reliably handling the planar lattice flow problem, Kelvin–Helmholtz instabilities and freely decaying two-dimensional turbulence.</description><identifier>ISSN: 0885-7474</identifier><identifier>EISSN: 1573-7691</identifier><identifier>DOI: 10.1007/s10915-017-0561-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Approximation ; Computational Mathematics and Numerical Analysis ; Error analysis ; Estimates ; Finite element method ; Fluid flow ; High Reynolds number ; Incompressible flow ; Kelvin-Helmholtz instability ; Kinematics ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Numerical analysis ; Reynolds number ; Robustness (mathematics) ; Theoretical ; Time dependence ; Velocity ; Viscosity ; Viscous flow</subject><ispartof>Journal of scientific computing, 2018-05, Vol.75 (2), p.830-858</ispartof><rights>Springer Science+Business Media, LLC 2017</rights><rights>Springer Science+Business Media, LLC 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-3cf69fe1249f26f8910e90bbe4bb32dcff159446fe8ee68a7102a8385c732bae3</citedby><cites>FETCH-LOGICAL-c316t-3cf69fe1249f26f8910e90bbe4bb32dcff159446fe8ee68a7102a8385c732bae3</cites><orcidid>0000-0001-7644-4693</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10915-017-0561-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918312931?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,778,782,21371,27907,27908,33727,41471,42540,43788,51302,64366,64370,72220</link.rule.ids></links><search><creatorcontrib>Schroeder, Philipp W.</creatorcontrib><creatorcontrib>Lube, Gert</creatorcontrib><title>Divergence-Free H(div)-FEM for Time-Dependent Incompressible Flows with Applications to High Reynolds Number Vortex Dynamics</title><title>Journal of scientific computing</title><addtitle>J Sci Comput</addtitle><description>In this article, we consider exactly divergence-free H (div)-conforming finite element methods for time-dependent incompressible viscous flow problems. This is an extension of previous research concerning divergence-free H 1 -conforming methods. For the linearised Oseen case, the first semi-discrete numerical analysis for time-dependent flows is presented whereby special emphasis is put on pressure- and Reynolds-semi-robustness. For convection-dominated problems, the proposed method relies on a velocity jump upwind stabilisation which is not gradient-based. Complementing the theoretical results, H (div)-FEM are applied to the simulation of full nonlinear Navier–Stokes problems. Focussing on dynamic high Reynolds number examples with vortical structures, the proposed method proves to be capable of reliably handling the planar lattice flow problem, Kelvin–Helmholtz instabilities and freely decaying two-dimensional turbulence.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Error analysis</subject><subject>Estimates</subject><subject>Finite element method</subject><subject>Fluid flow</subject><subject>High Reynolds number</subject><subject>Incompressible flow</subject><subject>Kelvin-Helmholtz instability</subject><subject>Kinematics</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical analysis</subject><subject>Reynolds number</subject><subject>Robustness (mathematics)</subject><subject>Theoretical</subject><subject>Time dependence</subject><subject>Velocity</subject><subject>Viscosity</subject><subject>Viscous flow</subject><issn>0885-7474</issn><issn>1573-7691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtLJDEURsOgMO3jB8wu4EYX0dykHslSbNsWdAYGnW2oSt-0kaqkTKp1GvzxdtOCK1d3c8534RDyC_g5cF5fZOAaSsahZrysgMEPMoGylqyuNOyRCVeqZHVRFz_JQc7PnHOttJiQ96l_xbTEYJHNEiKdny786xmbXd9TFxN98D2yKQ4YFhhGehts7IeEOfu2Qzrr4lumb358opfD0HnbjD6GTMdI5375RP_iOsRukenvVd9iov9iGvE_na5D03ubj8i-a7qMx5_3kDzOrh-u5uzuz83t1eUdsxKqkUnrKu0QRKGdqJzSwFHztsWibaVYWOeg1EVROVSIlWpq4KJRUpW2lqJtUB6Sk93ukOLLCvNonuMqhc1LIzQoCUJL2FCwo2yKOSd0Zki-b9LaADfbyGYX2Wwim21ks3XEzskbNiwxfS1_L30ANxyABg</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Schroeder, Philipp W.</creator><creator>Lube, Gert</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0001-7644-4693</orcidid></search><sort><creationdate>20180501</creationdate><title>Divergence-Free H(div)-FEM for Time-Dependent Incompressible Flows with Applications to High Reynolds Number Vortex Dynamics</title><author>Schroeder, Philipp W. ; Lube, Gert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-3cf69fe1249f26f8910e90bbe4bb32dcff159446fe8ee68a7102a8385c732bae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Error analysis</topic><topic>Estimates</topic><topic>Finite element method</topic><topic>Fluid flow</topic><topic>High Reynolds number</topic><topic>Incompressible flow</topic><topic>Kelvin-Helmholtz instability</topic><topic>Kinematics</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical analysis</topic><topic>Reynolds number</topic><topic>Robustness (mathematics)</topic><topic>Theoretical</topic><topic>Time dependence</topic><topic>Velocity</topic><topic>Viscosity</topic><topic>Viscous flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schroeder, Philipp W.</creatorcontrib><creatorcontrib>Lube, Gert</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schroeder, Philipp W.</au><au>Lube, Gert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Divergence-Free H(div)-FEM for Time-Dependent Incompressible Flows with Applications to High Reynolds Number Vortex Dynamics</atitle><jtitle>Journal of scientific computing</jtitle><stitle>J Sci Comput</stitle><date>2018-05-01</date><risdate>2018</risdate><volume>75</volume><issue>2</issue><spage>830</spage><epage>858</epage><pages>830-858</pages><issn>0885-7474</issn><eissn>1573-7691</eissn><abstract>In this article, we consider exactly divergence-free H (div)-conforming finite element methods for time-dependent incompressible viscous flow problems. This is an extension of previous research concerning divergence-free H 1 -conforming methods. For the linearised Oseen case, the first semi-discrete numerical analysis for time-dependent flows is presented whereby special emphasis is put on pressure- and Reynolds-semi-robustness. For convection-dominated problems, the proposed method relies on a velocity jump upwind stabilisation which is not gradient-based. Complementing the theoretical results, H (div)-FEM are applied to the simulation of full nonlinear Navier–Stokes problems. Focussing on dynamic high Reynolds number examples with vortical structures, the proposed method proves to be capable of reliably handling the planar lattice flow problem, Kelvin–Helmholtz instabilities and freely decaying two-dimensional turbulence.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10915-017-0561-1</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0001-7644-4693</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0885-7474
ispartof Journal of scientific computing, 2018-05, Vol.75 (2), p.830-858
issn 0885-7474
1573-7691
language eng
recordid cdi_proquest_journals_2918312931
source Springer Nature - Complete Springer Journals; ProQuest Central UK/Ireland; ProQuest Central
subjects Algorithms
Approximation
Computational Mathematics and Numerical Analysis
Error analysis
Estimates
Finite element method
Fluid flow
High Reynolds number
Incompressible flow
Kelvin-Helmholtz instability
Kinematics
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Numerical analysis
Reynolds number
Robustness (mathematics)
Theoretical
Time dependence
Velocity
Viscosity
Viscous flow
title Divergence-Free H(div)-FEM for Time-Dependent Incompressible Flows with Applications to High Reynolds Number Vortex Dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T17%3A02%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Divergence-Free%20H(div)-FEM%20for%20Time-Dependent%20Incompressible%20Flows%20with%20Applications%20to%20High%20Reynolds%20Number%20Vortex%20Dynamics&rft.jtitle=Journal%20of%20scientific%20computing&rft.au=Schroeder,%20Philipp%20W.&rft.date=2018-05-01&rft.volume=75&rft.issue=2&rft.spage=830&rft.epage=858&rft.pages=830-858&rft.issn=0885-7474&rft.eissn=1573-7691&rft_id=info:doi/10.1007/s10915-017-0561-1&rft_dat=%3Cproquest_cross%3E2918312931%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918312931&rft_id=info:pmid/&rfr_iscdi=true