Stabilized Reduced Basis Approximation of Incompressible Three-Dimensional Navier-Stokes Equations in Parametrized Deformed Domains
In this work we are interested in the numerical solution of the steady incompressible Navier-Stokes equations for fluid flow in pipes with varying curvatures and cross-sections. We intend to compute a reduced basis approximation of the solution, employing the geometry as a parameter in the reduced b...
Gespeichert in:
Veröffentlicht in: | Journal of scientific computing 2012, Vol.50 (1), p.198-212 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 212 |
---|---|
container_issue | 1 |
container_start_page | 198 |
container_title | Journal of scientific computing |
container_volume | 50 |
creator | Deparis, Simone Løvgren, A. Emil |
description | In this work we are interested in the numerical solution of the steady incompressible Navier-Stokes equations for fluid flow in pipes with varying curvatures and cross-sections. We intend to compute a reduced basis approximation of the solution, employing the geometry as a parameter in the reduced basis method. This has previously been done in a spectral element
setting in two dimensions for the steady Stokes equations. To compute the necessary basis-functions in the reduced basis method, we propose to use a stabilized
P
1
−
P
1
finite element method for solving the Navier-Stokes equations on different geometries. By employing the same stabilization in the reduced basis approximation, we avoid having to enrich the velocity basis in order to satisfy the inf-sup condition. This reduces the complexity of the reduced basis method for the Navier-Stokes problem, while keeping its good approximation properties. We prove the well posedness of the reduced problem and present numerical results for selected parameter dependent three dimensional pipes. |
doi_str_mv | 10.1007/s10915-011-9478-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918311646</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918311646</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-44769219ac723b6a4ec2992db7f2bf5dc0d90704a3995621feb11eb0be89e0713</originalsourceid><addsrcrecordid>eNp1kDlPxDAQhS0EEsvxA-gsURs8zuG45AYJAeKoLSeZgGETL54sAlr-OF4WiYpqpnjvzbyPsR2QeyCl3ieQBgohAYTJdSXUCptAoTOhSwOrbCKrqhA61_k62yB6llKayqgJ-7obXe2n_hNbfovtvEnz0JEnfjCbxfDuezf6MPDQ8YuhCf0sIpGvp8jvnyKiOPY9DpQUbsqv3JvHKO7G8ILET17nP1bifuA3Lroex_hz5xi7EPvFEnrnB9pia52bEm7_zk32cHpyf3QuLq_PLo4OLkWTQTmKPE9dFBjXaJXVpcuxUcaottadqruibWRrpJa5y4wpSgUd1gBYyxorg1JDtsl2l7mp2OscabTPYR7T52SVgSoDKPMyqWCpamIgitjZWUwU4ocFaRes7ZK1TaztgrVVyaOWHkra4RHjX_L_pm8tuIPE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918311646</pqid></control><display><type>article</type><title>Stabilized Reduced Basis Approximation of Incompressible Three-Dimensional Navier-Stokes Equations in Parametrized Deformed Domains</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Deparis, Simone ; Løvgren, A. Emil</creator><creatorcontrib>Deparis, Simone ; Løvgren, A. Emil</creatorcontrib><description>In this work we are interested in the numerical solution of the steady incompressible Navier-Stokes equations for fluid flow in pipes with varying curvatures and cross-sections. We intend to compute a reduced basis approximation of the solution, employing the geometry as a parameter in the reduced basis method. This has previously been done in a spectral element
setting in two dimensions for the steady Stokes equations. To compute the necessary basis-functions in the reduced basis method, we propose to use a stabilized
P
1
−
P
1
finite element method for solving the Navier-Stokes equations on different geometries. By employing the same stabilization in the reduced basis approximation, we avoid having to enrich the velocity basis in order to satisfy the inf-sup condition. This reduces the complexity of the reduced basis method for the Navier-Stokes problem, while keeping its good approximation properties. We prove the well posedness of the reduced problem and present numerical results for selected parameter dependent three dimensional pipes.</description><identifier>ISSN: 0885-7474</identifier><identifier>EISSN: 1573-7691</identifier><identifier>DOI: 10.1007/s10915-011-9478-2</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Algorithms ; Approximation ; Computational Mathematics and Numerical Analysis ; Finite element method ; Fluid flow ; Incompressible flow ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Navier-Stokes equations ; Parameters ; Pipes ; Theoretical</subject><ispartof>Journal of scientific computing, 2012, Vol.50 (1), p.198-212</ispartof><rights>Springer Science+Business Media, LLC 2011</rights><rights>Springer Science+Business Media, LLC 2011.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-44769219ac723b6a4ec2992db7f2bf5dc0d90704a3995621feb11eb0be89e0713</citedby><cites>FETCH-LOGICAL-c316t-44769219ac723b6a4ec2992db7f2bf5dc0d90704a3995621feb11eb0be89e0713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10915-011-9478-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918311646?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Deparis, Simone</creatorcontrib><creatorcontrib>Løvgren, A. Emil</creatorcontrib><title>Stabilized Reduced Basis Approximation of Incompressible Three-Dimensional Navier-Stokes Equations in Parametrized Deformed Domains</title><title>Journal of scientific computing</title><addtitle>J Sci Comput</addtitle><description>In this work we are interested in the numerical solution of the steady incompressible Navier-Stokes equations for fluid flow in pipes with varying curvatures and cross-sections. We intend to compute a reduced basis approximation of the solution, employing the geometry as a parameter in the reduced basis method. This has previously been done in a spectral element
setting in two dimensions for the steady Stokes equations. To compute the necessary basis-functions in the reduced basis method, we propose to use a stabilized
P
1
−
P
1
finite element method for solving the Navier-Stokes equations on different geometries. By employing the same stabilization in the reduced basis approximation, we avoid having to enrich the velocity basis in order to satisfy the inf-sup condition. This reduces the complexity of the reduced basis method for the Navier-Stokes problem, while keeping its good approximation properties. We prove the well posedness of the reduced problem and present numerical results for selected parameter dependent three dimensional pipes.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Finite element method</subject><subject>Fluid flow</subject><subject>Incompressible flow</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Navier-Stokes equations</subject><subject>Parameters</subject><subject>Pipes</subject><subject>Theoretical</subject><issn>0885-7474</issn><issn>1573-7691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kDlPxDAQhS0EEsvxA-gsURs8zuG45AYJAeKoLSeZgGETL54sAlr-OF4WiYpqpnjvzbyPsR2QeyCl3ieQBgohAYTJdSXUCptAoTOhSwOrbCKrqhA61_k62yB6llKayqgJ-7obXe2n_hNbfovtvEnz0JEnfjCbxfDuezf6MPDQ8YuhCf0sIpGvp8jvnyKiOPY9DpQUbsqv3JvHKO7G8ILET17nP1bifuA3Lroex_hz5xi7EPvFEnrnB9pia52bEm7_zk32cHpyf3QuLq_PLo4OLkWTQTmKPE9dFBjXaJXVpcuxUcaottadqruibWRrpJa5y4wpSgUd1gBYyxorg1JDtsl2l7mp2OscabTPYR7T52SVgSoDKPMyqWCpamIgitjZWUwU4ocFaRes7ZK1TaztgrVVyaOWHkra4RHjX_L_pm8tuIPE</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>Deparis, Simone</creator><creator>Løvgren, A. Emil</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>2012</creationdate><title>Stabilized Reduced Basis Approximation of Incompressible Three-Dimensional Navier-Stokes Equations in Parametrized Deformed Domains</title><author>Deparis, Simone ; Løvgren, A. Emil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-44769219ac723b6a4ec2992db7f2bf5dc0d90704a3995621feb11eb0be89e0713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Finite element method</topic><topic>Fluid flow</topic><topic>Incompressible flow</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Navier-Stokes equations</topic><topic>Parameters</topic><topic>Pipes</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deparis, Simone</creatorcontrib><creatorcontrib>Løvgren, A. Emil</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deparis, Simone</au><au>Løvgren, A. Emil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stabilized Reduced Basis Approximation of Incompressible Three-Dimensional Navier-Stokes Equations in Parametrized Deformed Domains</atitle><jtitle>Journal of scientific computing</jtitle><stitle>J Sci Comput</stitle><date>2012</date><risdate>2012</risdate><volume>50</volume><issue>1</issue><spage>198</spage><epage>212</epage><pages>198-212</pages><issn>0885-7474</issn><eissn>1573-7691</eissn><abstract>In this work we are interested in the numerical solution of the steady incompressible Navier-Stokes equations for fluid flow in pipes with varying curvatures and cross-sections. We intend to compute a reduced basis approximation of the solution, employing the geometry as a parameter in the reduced basis method. This has previously been done in a spectral element
setting in two dimensions for the steady Stokes equations. To compute the necessary basis-functions in the reduced basis method, we propose to use a stabilized
P
1
−
P
1
finite element method for solving the Navier-Stokes equations on different geometries. By employing the same stabilization in the reduced basis approximation, we avoid having to enrich the velocity basis in order to satisfy the inf-sup condition. This reduces the complexity of the reduced basis method for the Navier-Stokes problem, while keeping its good approximation properties. We prove the well posedness of the reduced problem and present numerical results for selected parameter dependent three dimensional pipes.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10915-011-9478-2</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-7474 |
ispartof | Journal of scientific computing, 2012, Vol.50 (1), p.198-212 |
issn | 0885-7474 1573-7691 |
language | eng |
recordid | cdi_proquest_journals_2918311646 |
source | ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Algorithms Approximation Computational Mathematics and Numerical Analysis Finite element method Fluid flow Incompressible flow Mathematical and Computational Engineering Mathematical and Computational Physics Mathematics Mathematics and Statistics Navier-Stokes equations Parameters Pipes Theoretical |
title | Stabilized Reduced Basis Approximation of Incompressible Three-Dimensional Navier-Stokes Equations in Parametrized Deformed Domains |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T14%3A20%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stabilized%20Reduced%20Basis%20Approximation%20of%20Incompressible%20Three-Dimensional%20Navier-Stokes%20Equations%20in%20Parametrized%20Deformed%20Domains&rft.jtitle=Journal%20of%20scientific%20computing&rft.au=Deparis,%20Simone&rft.date=2012&rft.volume=50&rft.issue=1&rft.spage=198&rft.epage=212&rft.pages=198-212&rft.issn=0885-7474&rft.eissn=1573-7691&rft_id=info:doi/10.1007/s10915-011-9478-2&rft_dat=%3Cproquest_cross%3E2918311646%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918311646&rft_id=info:pmid/&rfr_iscdi=true |