Alternating Direction Method for Covariance Selection Models
The covariance selection problem captures many applications in various fields, and it has been well studied in the literature. Recently, an l 1 -norm penalized log-likelihood model has been developed for the covariance selection problem, and this novel model is capable of completing the model select...
Gespeichert in:
Veröffentlicht in: | Journal of scientific computing 2012-05, Vol.51 (2), p.261-273 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 273 |
---|---|
container_issue | 2 |
container_start_page | 261 |
container_title | Journal of scientific computing |
container_volume | 51 |
creator | Yuan, Xiaoming |
description | The covariance selection problem captures many applications in various fields, and it has been well studied in the literature. Recently, an
l
1
-norm penalized log-likelihood model has been developed for the covariance selection problem, and this novel model is capable of completing the model selection and parameter estimation simultaneously. With the rapidly increasing magnitude of data, it is urged to consider efficient numerical algorithms for large-scale cases of the
l
1
-norm penalized log-likelihood model. For this purpose, this paper develops the alternating direction method (ADM). Some preliminary numerical results show that the ADM approach is very efficient for large-scale cases of the
l
1
-norm penalized log-likelihood model. |
doi_str_mv | 10.1007/s10915-011-9507-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918311140</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918311140</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-212fdd7af4342b9b43635b8d792a11a3697c9462e8f621a7adcc735f9dcd79723</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOI7-AHcF19HcPJoG3AzVUWHEhboOaR5jh9qMSUfw39uhiitXd3G-c7h8CJ0DuQRC5FUGokBgAoCVIBLDAZqBkAzLUsEhmpGqElhyyY_RSc4bQoiqFJ2h60U3-NSboe3XxU2bvB3a2BePfniLrggxFXX8NKk1vfXFs-9-8-h8l0_RUTBd9mc_d45el7cv9T1ePd091IsVthzEgCnQ4Jw0gTNOG9VwVjLRVE4qagAMK5W0ipfUV6GkYKRx1komgnJ2ZCRlc3Qx7W5T_Nj5POhN3I1Pd1lTBRUDAE5GCibKpphz8kFvU_tu0pcGoveS9CRJj5L0XpKGsUOnTh7Zfu3T3_L_pW-Y0Giu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918311140</pqid></control><display><type>article</type><title>Alternating Direction Method for Covariance Selection Models</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Yuan, Xiaoming</creator><creatorcontrib>Yuan, Xiaoming</creatorcontrib><description>The covariance selection problem captures many applications in various fields, and it has been well studied in the literature. Recently, an
l
1
-norm penalized log-likelihood model has been developed for the covariance selection problem, and this novel model is capable of completing the model selection and parameter estimation simultaneously. With the rapidly increasing magnitude of data, it is urged to consider efficient numerical algorithms for large-scale cases of the
l
1
-norm penalized log-likelihood model. For this purpose, this paper develops the alternating direction method (ADM). Some preliminary numerical results show that the ADM approach is very efficient for large-scale cases of the
l
1
-norm penalized log-likelihood model.</description><identifier>ISSN: 0885-7474</identifier><identifier>EISSN: 1573-7691</identifier><identifier>DOI: 10.1007/s10915-011-9507-1</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Algorithms ; Computational Mathematics and Numerical Analysis ; Covariance ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Parameter estimation ; Theoretical</subject><ispartof>Journal of scientific computing, 2012-05, Vol.51 (2), p.261-273</ispartof><rights>Springer Science+Business Media, LLC 2011</rights><rights>Springer Science+Business Media, LLC 2011.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-212fdd7af4342b9b43635b8d792a11a3697c9462e8f621a7adcc735f9dcd79723</citedby><cites>FETCH-LOGICAL-c415t-212fdd7af4342b9b43635b8d792a11a3697c9462e8f621a7adcc735f9dcd79723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10915-011-9507-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918311140?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Yuan, Xiaoming</creatorcontrib><title>Alternating Direction Method for Covariance Selection Models</title><title>Journal of scientific computing</title><addtitle>J Sci Comput</addtitle><description>The covariance selection problem captures many applications in various fields, and it has been well studied in the literature. Recently, an
l
1
-norm penalized log-likelihood model has been developed for the covariance selection problem, and this novel model is capable of completing the model selection and parameter estimation simultaneously. With the rapidly increasing magnitude of data, it is urged to consider efficient numerical algorithms for large-scale cases of the
l
1
-norm penalized log-likelihood model. For this purpose, this paper develops the alternating direction method (ADM). Some preliminary numerical results show that the ADM approach is very efficient for large-scale cases of the
l
1
-norm penalized log-likelihood model.</description><subject>Algorithms</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Covariance</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Parameter estimation</subject><subject>Theoretical</subject><issn>0885-7474</issn><issn>1573-7691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtLxDAUhYMoOI7-AHcF19HcPJoG3AzVUWHEhboOaR5jh9qMSUfw39uhiitXd3G-c7h8CJ0DuQRC5FUGokBgAoCVIBLDAZqBkAzLUsEhmpGqElhyyY_RSc4bQoiqFJ2h60U3-NSboe3XxU2bvB3a2BePfniLrggxFXX8NKk1vfXFs-9-8-h8l0_RUTBd9mc_d45el7cv9T1ePd091IsVthzEgCnQ4Jw0gTNOG9VwVjLRVE4qagAMK5W0ipfUV6GkYKRx1komgnJ2ZCRlc3Qx7W5T_Nj5POhN3I1Pd1lTBRUDAE5GCibKpphz8kFvU_tu0pcGoveS9CRJj5L0XpKGsUOnTh7Zfu3T3_L_pW-Y0Giu</recordid><startdate>20120501</startdate><enddate>20120501</enddate><creator>Yuan, Xiaoming</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20120501</creationdate><title>Alternating Direction Method for Covariance Selection Models</title><author>Yuan, Xiaoming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-212fdd7af4342b9b43635b8d792a11a3697c9462e8f621a7adcc735f9dcd79723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Covariance</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Parameter estimation</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Xiaoming</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Xiaoming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Alternating Direction Method for Covariance Selection Models</atitle><jtitle>Journal of scientific computing</jtitle><stitle>J Sci Comput</stitle><date>2012-05-01</date><risdate>2012</risdate><volume>51</volume><issue>2</issue><spage>261</spage><epage>273</epage><pages>261-273</pages><issn>0885-7474</issn><eissn>1573-7691</eissn><abstract>The covariance selection problem captures many applications in various fields, and it has been well studied in the literature. Recently, an
l
1
-norm penalized log-likelihood model has been developed for the covariance selection problem, and this novel model is capable of completing the model selection and parameter estimation simultaneously. With the rapidly increasing magnitude of data, it is urged to consider efficient numerical algorithms for large-scale cases of the
l
1
-norm penalized log-likelihood model. For this purpose, this paper develops the alternating direction method (ADM). Some preliminary numerical results show that the ADM approach is very efficient for large-scale cases of the
l
1
-norm penalized log-likelihood model.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10915-011-9507-1</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-7474 |
ispartof | Journal of scientific computing, 2012-05, Vol.51 (2), p.261-273 |
issn | 0885-7474 1573-7691 |
language | eng |
recordid | cdi_proquest_journals_2918311140 |
source | ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Algorithms Computational Mathematics and Numerical Analysis Covariance Mathematical and Computational Engineering Mathematical and Computational Physics Mathematical models Mathematics Mathematics and Statistics Parameter estimation Theoretical |
title | Alternating Direction Method for Covariance Selection Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T20%3A27%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Alternating%20Direction%20Method%20for%20Covariance%20Selection%20Models&rft.jtitle=Journal%20of%20scientific%20computing&rft.au=Yuan,%20Xiaoming&rft.date=2012-05-01&rft.volume=51&rft.issue=2&rft.spage=261&rft.epage=273&rft.pages=261-273&rft.issn=0885-7474&rft.eissn=1573-7691&rft_id=info:doi/10.1007/s10915-011-9507-1&rft_dat=%3Cproquest_cross%3E2918311140%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918311140&rft_id=info:pmid/&rfr_iscdi=true |