On Parabolic Boundary Layers for Convection–Diffusion Equations in a Channel: Analysis and Numerical Applications

In this article we discuss singularly perturbed convection–diffusion equations in a channel in cases producing parabolic boundary layers. It has been shown that one can improve the numerical resolution of singularly perturbed problems involving boundary layers, by incorporating the structure of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of scientific computing 2006-09, Vol.28 (2-3), p.361-410
Hauptverfasser: Jung, Chang-Yeol, Temam, Roger
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 410
container_issue 2-3
container_start_page 361
container_title Journal of scientific computing
container_volume 28
creator Jung, Chang-Yeol
Temam, Roger
description In this article we discuss singularly perturbed convection–diffusion equations in a channel in cases producing parabolic boundary layers. It has been shown that one can improve the numerical resolution of singularly perturbed problems involving boundary layers, by incorporating the structure of the boundary layers into the finite element spaces, when this structure is available; see e.g. [Cheng, W. and Temam, R. (2002). Comput. Fluid. V.31, 453–466; Jung, C. (2005). Numer. Meth. Partial Differ. Eq. V.21, 623–648]. This approach is developed in this article for a convection–diffusion equation. Using an analytical approach, we first derive an approximate (simplified) form of the parabolic boundary layers (elements) for our problem; we then develop new numerical schemes using these boundary layer elements. The results are performed for the perturbation parameter ε in the range 10−1–10−15 whereas the discretization mesh is in the range of order 1/10–1/100 in the x-direction and of order 1/10–1/30 in the y-direction. Indications on various extensions of this work are briefly described at the end of the Introduction.
doi_str_mv 10.1007/s10915-006-9086-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918310622</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918310622</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-8823769511ad5f1b631af88f2ee8f2d63d7bec1d559f0488f11605c16dcfa0773</originalsourceid><addsrcrecordid>eNotkEtOwzAQhi0EEqVwAHaWWAc8cf0IuxLKQ6ooC1hbrmOLVKkd7AapO-7ADTkJrsJmZjTzz8yvD6FLINdAiLhJQCpgBSG8qIjkhTxCE2CCFoJXcIwmREpWiJmYnaKzlDaEkEpW5QSllcevOup16FqD78LgGx33eKn3NibsQsR18F_W7Nrgf79_7lvnhpRrvPgc9KGZcOuxxvWH9t52t3judbdPbcLaN_hl2NrYGt3hed_nB-PGOTpxukv24j9P0fvD4q1-Kparx-d6vixMKeiukLKk2T0D0A1zsOYUtJPSldbm0HDaiLU10DBWOTLLAwBOmAHeGKeJEHSKrsa7fQyfg007tQlDzP6SKiuQFAgvy6yCUWViSClap_rYbjMEBUQd2KqRrcps1YGtkvQPX5NuTA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918310622</pqid></control><display><type>article</type><title>On Parabolic Boundary Layers for Convection–Diffusion Equations in a Channel: Analysis and Numerical Applications</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Jung, Chang-Yeol ; Temam, Roger</creator><creatorcontrib>Jung, Chang-Yeol ; Temam, Roger</creatorcontrib><description>In this article we discuss singularly perturbed convection–diffusion equations in a channel in cases producing parabolic boundary layers. It has been shown that one can improve the numerical resolution of singularly perturbed problems involving boundary layers, by incorporating the structure of the boundary layers into the finite element spaces, when this structure is available; see e.g. [Cheng, W. and Temam, R. (2002). Comput. Fluid. V.31, 453–466; Jung, C. (2005). Numer. Meth. Partial Differ. Eq. V.21, 623–648]. This approach is developed in this article for a convection–diffusion equation. Using an analytical approach, we first derive an approximate (simplified) form of the parabolic boundary layers (elements) for our problem; we then develop new numerical schemes using these boundary layer elements. The results are performed for the perturbation parameter ε in the range 10−1–10−15 whereas the discretization mesh is in the range of order 1/10–1/100 in the x-direction and of order 1/10–1/30 in the y-direction. Indications on various extensions of this work are briefly described at the end of the Introduction.</description><identifier>ISSN: 0885-7474</identifier><identifier>EISSN: 1573-7691</identifier><identifier>DOI: 10.1007/s10915-006-9086-8</identifier><language>eng</language><publisher>New York: Springer Nature B.V</publisher><subject>Boundary layers ; Convection-diffusion equation ; Diffusion layers</subject><ispartof>Journal of scientific computing, 2006-09, Vol.28 (2-3), p.361-410</ispartof><rights>Springer Science+Business Media, Inc. 2006.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c273t-8823769511ad5f1b631af88f2ee8f2d63d7bec1d559f0488f11605c16dcfa0773</citedby><cites>FETCH-LOGICAL-c273t-8823769511ad5f1b631af88f2ee8f2d63d7bec1d559f0488f11605c16dcfa0773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2918310622?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,777,781,21369,27905,27906,33725,43786,64364,64368,72218</link.rule.ids></links><search><creatorcontrib>Jung, Chang-Yeol</creatorcontrib><creatorcontrib>Temam, Roger</creatorcontrib><title>On Parabolic Boundary Layers for Convection–Diffusion Equations in a Channel: Analysis and Numerical Applications</title><title>Journal of scientific computing</title><description>In this article we discuss singularly perturbed convection–diffusion equations in a channel in cases producing parabolic boundary layers. It has been shown that one can improve the numerical resolution of singularly perturbed problems involving boundary layers, by incorporating the structure of the boundary layers into the finite element spaces, when this structure is available; see e.g. [Cheng, W. and Temam, R. (2002). Comput. Fluid. V.31, 453–466; Jung, C. (2005). Numer. Meth. Partial Differ. Eq. V.21, 623–648]. This approach is developed in this article for a convection–diffusion equation. Using an analytical approach, we first derive an approximate (simplified) form of the parabolic boundary layers (elements) for our problem; we then develop new numerical schemes using these boundary layer elements. The results are performed for the perturbation parameter ε in the range 10−1–10−15 whereas the discretization mesh is in the range of order 1/10–1/100 in the x-direction and of order 1/10–1/30 in the y-direction. Indications on various extensions of this work are briefly described at the end of the Introduction.</description><subject>Boundary layers</subject><subject>Convection-diffusion equation</subject><subject>Diffusion layers</subject><issn>0885-7474</issn><issn>1573-7691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNotkEtOwzAQhi0EEqVwAHaWWAc8cf0IuxLKQ6ooC1hbrmOLVKkd7AapO-7ADTkJrsJmZjTzz8yvD6FLINdAiLhJQCpgBSG8qIjkhTxCE2CCFoJXcIwmREpWiJmYnaKzlDaEkEpW5QSllcevOup16FqD78LgGx33eKn3NibsQsR18F_W7Nrgf79_7lvnhpRrvPgc9KGZcOuxxvWH9t52t3judbdPbcLaN_hl2NrYGt3hed_nB-PGOTpxukv24j9P0fvD4q1-Kparx-d6vixMKeiukLKk2T0D0A1zsOYUtJPSldbm0HDaiLU10DBWOTLLAwBOmAHeGKeJEHSKrsa7fQyfg007tQlDzP6SKiuQFAgvy6yCUWViSClap_rYbjMEBUQd2KqRrcps1YGtkvQPX5NuTA</recordid><startdate>20060901</startdate><enddate>20060901</enddate><creator>Jung, Chang-Yeol</creator><creator>Temam, Roger</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20060901</creationdate><title>On Parabolic Boundary Layers for Convection–Diffusion Equations in a Channel: Analysis and Numerical Applications</title><author>Jung, Chang-Yeol ; Temam, Roger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-8823769511ad5f1b631af88f2ee8f2d63d7bec1d559f0488f11605c16dcfa0773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Boundary layers</topic><topic>Convection-diffusion equation</topic><topic>Diffusion layers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jung, Chang-Yeol</creatorcontrib><creatorcontrib>Temam, Roger</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jung, Chang-Yeol</au><au>Temam, Roger</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Parabolic Boundary Layers for Convection–Diffusion Equations in a Channel: Analysis and Numerical Applications</atitle><jtitle>Journal of scientific computing</jtitle><date>2006-09-01</date><risdate>2006</risdate><volume>28</volume><issue>2-3</issue><spage>361</spage><epage>410</epage><pages>361-410</pages><issn>0885-7474</issn><eissn>1573-7691</eissn><abstract>In this article we discuss singularly perturbed convection–diffusion equations in a channel in cases producing parabolic boundary layers. It has been shown that one can improve the numerical resolution of singularly perturbed problems involving boundary layers, by incorporating the structure of the boundary layers into the finite element spaces, when this structure is available; see e.g. [Cheng, W. and Temam, R. (2002). Comput. Fluid. V.31, 453–466; Jung, C. (2005). Numer. Meth. Partial Differ. Eq. V.21, 623–648]. This approach is developed in this article for a convection–diffusion equation. Using an analytical approach, we first derive an approximate (simplified) form of the parabolic boundary layers (elements) for our problem; we then develop new numerical schemes using these boundary layer elements. The results are performed for the perturbation parameter ε in the range 10−1–10−15 whereas the discretization mesh is in the range of order 1/10–1/100 in the x-direction and of order 1/10–1/30 in the y-direction. Indications on various extensions of this work are briefly described at the end of the Introduction.</abstract><cop>New York</cop><pub>Springer Nature B.V</pub><doi>10.1007/s10915-006-9086-8</doi><tpages>50</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0885-7474
ispartof Journal of scientific computing, 2006-09, Vol.28 (2-3), p.361-410
issn 0885-7474
1573-7691
language eng
recordid cdi_proquest_journals_2918310622
source Springer Nature - Complete Springer Journals; ProQuest Central UK/Ireland; ProQuest Central
subjects Boundary layers
Convection-diffusion equation
Diffusion layers
title On Parabolic Boundary Layers for Convection–Diffusion Equations in a Channel: Analysis and Numerical Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T19%3A35%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Parabolic%20Boundary%20Layers%20for%20Convection%E2%80%93Diffusion%20Equations%20in%20a%20Channel:%20Analysis%20and%20Numerical%20Applications&rft.jtitle=Journal%20of%20scientific%20computing&rft.au=Jung,%20Chang-Yeol&rft.date=2006-09-01&rft.volume=28&rft.issue=2-3&rft.spage=361&rft.epage=410&rft.pages=361-410&rft.issn=0885-7474&rft.eissn=1573-7691&rft_id=info:doi/10.1007/s10915-006-9086-8&rft_dat=%3Cproquest_cross%3E2918310622%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918310622&rft_id=info:pmid/&rfr_iscdi=true