On Parabolic Boundary Layers for Convection–Diffusion Equations in a Channel: Analysis and Numerical Applications
In this article we discuss singularly perturbed convection–diffusion equations in a channel in cases producing parabolic boundary layers. It has been shown that one can improve the numerical resolution of singularly perturbed problems involving boundary layers, by incorporating the structure of the...
Gespeichert in:
Veröffentlicht in: | Journal of scientific computing 2006-09, Vol.28 (2-3), p.361-410 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 410 |
---|---|
container_issue | 2-3 |
container_start_page | 361 |
container_title | Journal of scientific computing |
container_volume | 28 |
creator | Jung, Chang-Yeol Temam, Roger |
description | In this article we discuss singularly perturbed convection–diffusion equations in a channel in cases producing parabolic boundary layers. It has been shown that one can improve the numerical resolution of singularly perturbed problems involving boundary layers, by incorporating the structure of the boundary layers into the finite element spaces, when this structure is available; see e.g. [Cheng, W. and Temam, R. (2002). Comput. Fluid. V.31, 453–466; Jung, C. (2005). Numer. Meth. Partial Differ. Eq. V.21, 623–648]. This approach is developed in this article for a convection–diffusion equation. Using an analytical approach, we first derive an approximate (simplified) form of the parabolic boundary layers (elements) for our problem; we then develop new numerical schemes using these boundary layer elements. The results are performed for the perturbation parameter ε in the range 10−1–10−15 whereas the discretization mesh is in the range of order 1/10–1/100 in the x-direction and of order 1/10–1/30 in the y-direction. Indications on various extensions of this work are briefly described at the end of the Introduction. |
doi_str_mv | 10.1007/s10915-006-9086-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918310622</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918310622</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-8823769511ad5f1b631af88f2ee8f2d63d7bec1d559f0488f11605c16dcfa0773</originalsourceid><addsrcrecordid>eNotkEtOwzAQhi0EEqVwAHaWWAc8cf0IuxLKQ6ooC1hbrmOLVKkd7AapO-7ADTkJrsJmZjTzz8yvD6FLINdAiLhJQCpgBSG8qIjkhTxCE2CCFoJXcIwmREpWiJmYnaKzlDaEkEpW5QSllcevOup16FqD78LgGx33eKn3NibsQsR18F_W7Nrgf79_7lvnhpRrvPgc9KGZcOuxxvWH9t52t3judbdPbcLaN_hl2NrYGt3hed_nB-PGOTpxukv24j9P0fvD4q1-Kparx-d6vixMKeiukLKk2T0D0A1zsOYUtJPSldbm0HDaiLU10DBWOTLLAwBOmAHeGKeJEHSKrsa7fQyfg007tQlDzP6SKiuQFAgvy6yCUWViSClap_rYbjMEBUQd2KqRrcps1YGtkvQPX5NuTA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918310622</pqid></control><display><type>article</type><title>On Parabolic Boundary Layers for Convection–Diffusion Equations in a Channel: Analysis and Numerical Applications</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Jung, Chang-Yeol ; Temam, Roger</creator><creatorcontrib>Jung, Chang-Yeol ; Temam, Roger</creatorcontrib><description>In this article we discuss singularly perturbed convection–diffusion equations in a channel in cases producing parabolic boundary layers. It has been shown that one can improve the numerical resolution of singularly perturbed problems involving boundary layers, by incorporating the structure of the boundary layers into the finite element spaces, when this structure is available; see e.g. [Cheng, W. and Temam, R. (2002). Comput. Fluid. V.31, 453–466; Jung, C. (2005). Numer. Meth. Partial Differ. Eq. V.21, 623–648]. This approach is developed in this article for a convection–diffusion equation. Using an analytical approach, we first derive an approximate (simplified) form of the parabolic boundary layers (elements) for our problem; we then develop new numerical schemes using these boundary layer elements. The results are performed for the perturbation parameter ε in the range 10−1–10−15 whereas the discretization mesh is in the range of order 1/10–1/100 in the x-direction and of order 1/10–1/30 in the y-direction. Indications on various extensions of this work are briefly described at the end of the Introduction.</description><identifier>ISSN: 0885-7474</identifier><identifier>EISSN: 1573-7691</identifier><identifier>DOI: 10.1007/s10915-006-9086-8</identifier><language>eng</language><publisher>New York: Springer Nature B.V</publisher><subject>Boundary layers ; Convection-diffusion equation ; Diffusion layers</subject><ispartof>Journal of scientific computing, 2006-09, Vol.28 (2-3), p.361-410</ispartof><rights>Springer Science+Business Media, Inc. 2006.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c273t-8823769511ad5f1b631af88f2ee8f2d63d7bec1d559f0488f11605c16dcfa0773</citedby><cites>FETCH-LOGICAL-c273t-8823769511ad5f1b631af88f2ee8f2d63d7bec1d559f0488f11605c16dcfa0773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2918310622?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,777,781,21369,27905,27906,33725,43786,64364,64368,72218</link.rule.ids></links><search><creatorcontrib>Jung, Chang-Yeol</creatorcontrib><creatorcontrib>Temam, Roger</creatorcontrib><title>On Parabolic Boundary Layers for Convection–Diffusion Equations in a Channel: Analysis and Numerical Applications</title><title>Journal of scientific computing</title><description>In this article we discuss singularly perturbed convection–diffusion equations in a channel in cases producing parabolic boundary layers. It has been shown that one can improve the numerical resolution of singularly perturbed problems involving boundary layers, by incorporating the structure of the boundary layers into the finite element spaces, when this structure is available; see e.g. [Cheng, W. and Temam, R. (2002). Comput. Fluid. V.31, 453–466; Jung, C. (2005). Numer. Meth. Partial Differ. Eq. V.21, 623–648]. This approach is developed in this article for a convection–diffusion equation. Using an analytical approach, we first derive an approximate (simplified) form of the parabolic boundary layers (elements) for our problem; we then develop new numerical schemes using these boundary layer elements. The results are performed for the perturbation parameter ε in the range 10−1–10−15 whereas the discretization mesh is in the range of order 1/10–1/100 in the x-direction and of order 1/10–1/30 in the y-direction. Indications on various extensions of this work are briefly described at the end of the Introduction.</description><subject>Boundary layers</subject><subject>Convection-diffusion equation</subject><subject>Diffusion layers</subject><issn>0885-7474</issn><issn>1573-7691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNotkEtOwzAQhi0EEqVwAHaWWAc8cf0IuxLKQ6ooC1hbrmOLVKkd7AapO-7ADTkJrsJmZjTzz8yvD6FLINdAiLhJQCpgBSG8qIjkhTxCE2CCFoJXcIwmREpWiJmYnaKzlDaEkEpW5QSllcevOup16FqD78LgGx33eKn3NibsQsR18F_W7Nrgf79_7lvnhpRrvPgc9KGZcOuxxvWH9t52t3judbdPbcLaN_hl2NrYGt3hed_nB-PGOTpxukv24j9P0fvD4q1-Kparx-d6vixMKeiukLKk2T0D0A1zsOYUtJPSldbm0HDaiLU10DBWOTLLAwBOmAHeGKeJEHSKrsa7fQyfg007tQlDzP6SKiuQFAgvy6yCUWViSClap_rYbjMEBUQd2KqRrcps1YGtkvQPX5NuTA</recordid><startdate>20060901</startdate><enddate>20060901</enddate><creator>Jung, Chang-Yeol</creator><creator>Temam, Roger</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20060901</creationdate><title>On Parabolic Boundary Layers for Convection–Diffusion Equations in a Channel: Analysis and Numerical Applications</title><author>Jung, Chang-Yeol ; Temam, Roger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-8823769511ad5f1b631af88f2ee8f2d63d7bec1d559f0488f11605c16dcfa0773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Boundary layers</topic><topic>Convection-diffusion equation</topic><topic>Diffusion layers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jung, Chang-Yeol</creatorcontrib><creatorcontrib>Temam, Roger</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jung, Chang-Yeol</au><au>Temam, Roger</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Parabolic Boundary Layers for Convection–Diffusion Equations in a Channel: Analysis and Numerical Applications</atitle><jtitle>Journal of scientific computing</jtitle><date>2006-09-01</date><risdate>2006</risdate><volume>28</volume><issue>2-3</issue><spage>361</spage><epage>410</epage><pages>361-410</pages><issn>0885-7474</issn><eissn>1573-7691</eissn><abstract>In this article we discuss singularly perturbed convection–diffusion equations in a channel in cases producing parabolic boundary layers. It has been shown that one can improve the numerical resolution of singularly perturbed problems involving boundary layers, by incorporating the structure of the boundary layers into the finite element spaces, when this structure is available; see e.g. [Cheng, W. and Temam, R. (2002). Comput. Fluid. V.31, 453–466; Jung, C. (2005). Numer. Meth. Partial Differ. Eq. V.21, 623–648]. This approach is developed in this article for a convection–diffusion equation. Using an analytical approach, we first derive an approximate (simplified) form of the parabolic boundary layers (elements) for our problem; we then develop new numerical schemes using these boundary layer elements. The results are performed for the perturbation parameter ε in the range 10−1–10−15 whereas the discretization mesh is in the range of order 1/10–1/100 in the x-direction and of order 1/10–1/30 in the y-direction. Indications on various extensions of this work are briefly described at the end of the Introduction.</abstract><cop>New York</cop><pub>Springer Nature B.V</pub><doi>10.1007/s10915-006-9086-8</doi><tpages>50</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-7474 |
ispartof | Journal of scientific computing, 2006-09, Vol.28 (2-3), p.361-410 |
issn | 0885-7474 1573-7691 |
language | eng |
recordid | cdi_proquest_journals_2918310622 |
source | Springer Nature - Complete Springer Journals; ProQuest Central UK/Ireland; ProQuest Central |
subjects | Boundary layers Convection-diffusion equation Diffusion layers |
title | On Parabolic Boundary Layers for Convection–Diffusion Equations in a Channel: Analysis and Numerical Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T19%3A35%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Parabolic%20Boundary%20Layers%20for%20Convection%E2%80%93Diffusion%20Equations%20in%20a%20Channel:%20Analysis%20and%20Numerical%20Applications&rft.jtitle=Journal%20of%20scientific%20computing&rft.au=Jung,%20Chang-Yeol&rft.date=2006-09-01&rft.volume=28&rft.issue=2-3&rft.spage=361&rft.epage=410&rft.pages=361-410&rft.issn=0885-7474&rft.eissn=1573-7691&rft_id=info:doi/10.1007/s10915-006-9086-8&rft_dat=%3Cproquest_cross%3E2918310622%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918310622&rft_id=info:pmid/&rfr_iscdi=true |