Heat Transfer Experiment and Simulation of the Verification Facility for High Power Rotating Tritium Target System

High intensity D–T fusion neutron generator (HINEG) is important for research and development work of fusion reactors, of which the rotating target system is one of the key components. The design of the cooling technology principle verification facility both for tritium target systems of the 3 × 10...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fusion energy 2015-12, Vol.34 (6), p.1252-1256
Hauptverfasser: Wang, Gang, Wang, Zhen, Yu, Qianfeng, Song, Yong, Wu, Yican, Cheng, Wenlong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1256
container_issue 6
container_start_page 1252
container_title Journal of fusion energy
container_volume 34
creator Wang, Gang
Wang, Zhen
Yu, Qianfeng
Song, Yong
Wu, Yican
Cheng, Wenlong
description High intensity D–T fusion neutron generator (HINEG) is important for research and development work of fusion reactors, of which the rotating target system is one of the key components. The design of the cooling technology principle verification facility both for tritium target systems of the 3 × 10 13 and 10 14  n/s HINEG was proposed. The facility employed the jet array cooling method. The first stage heat transfer experiment was carried out and the heat transfer processes was simulated by CFD method, which aimed at the investigations of the new cooling enhancement technology. The experimental results, which had a good agreement with the numerical simulation results, show that the maximum temperature of the target surface was about 89.4 °C under 60 kW heating condition and the average equivalent convection heat transfer coefficient of the jet array cooling was about 57,000 W/(m 2  K). All the results show that the verification facility could achieve the cooling requirement for 3 × 10 13  n/s neutron yield (60 kW) design objective and the jet array cooling enhancement technology was effective.
doi_str_mv 10.1007/s10894-015-9952-1
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2918308100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A714497640</galeid><sourcerecordid>A714497640</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-1c297f0303baf007bf18842eaf029b0704683e3306fe7d91ed06661c820e328e3</originalsourceid><addsrcrecordid>eNp1kU9vGyEQxVHVSnXTfoDekHreZAb2DxyjKKkrRWrVOL0ivB42RF5wAav1tw_WRuqp4oCYeb8HzGPsM8IlAgxXGUHptgHsGq070eAbtsJuEI3uNL5lK8C-diXK9-xDzs8AoFWrVyytyRa-STZkR4nf_j1Q8jOFwm3Y8Qc_H_e2-Bh4dLw8Ef9V286PS-3Ojn7vy4m7mPjaT0_8R_xTXX7GUgVhqr6--OPMNzZNVPjDKReaP7J3zu4zfXrdL9jj3e3mZt3cf__67eb6vhlb0ZUGR6EHBxLk1rr6xa1DpVpB9SD0FgZoeyVJSugdDTuNtIO-73FUAkgKRfKCfVl8Dyn-PlIu5jkeU6hXGqFRSVB1clV1uagmuyfjg4sl2bGuHc1-jIGcr_XrAdtWD317BnABxhRzTuTMoU7MppNBMOcszJKFqVmYcxYGKyMWJldtmCj9e8r_oRekk4vc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918308100</pqid></control><display><type>article</type><title>Heat Transfer Experiment and Simulation of the Verification Facility for High Power Rotating Tritium Target System</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Wang, Gang ; Wang, Zhen ; Yu, Qianfeng ; Song, Yong ; Wu, Yican ; Cheng, Wenlong</creator><creatorcontrib>Wang, Gang ; Wang, Zhen ; Yu, Qianfeng ; Song, Yong ; Wu, Yican ; Cheng, Wenlong</creatorcontrib><description>High intensity D–T fusion neutron generator (HINEG) is important for research and development work of fusion reactors, of which the rotating target system is one of the key components. The design of the cooling technology principle verification facility both for tritium target systems of the 3 × 10 13 and 10 14  n/s HINEG was proposed. The facility employed the jet array cooling method. The first stage heat transfer experiment was carried out and the heat transfer processes was simulated by CFD method, which aimed at the investigations of the new cooling enhancement technology. The experimental results, which had a good agreement with the numerical simulation results, show that the maximum temperature of the target surface was about 89.4 °C under 60 kW heating condition and the average equivalent convection heat transfer coefficient of the jet array cooling was about 57,000 W/(m 2  K). All the results show that the verification facility could achieve the cooling requirement for 3 × 10 13  n/s neutron yield (60 kW) design objective and the jet array cooling enhancement technology was effective.</description><identifier>ISSN: 0164-0313</identifier><identifier>EISSN: 1572-9591</identifier><identifier>DOI: 10.1007/s10894-015-9952-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Arrays ; Convection cooling ; Convection heating ; Cooling ; Design ; Energy Systems ; Experiments ; Fusion reactors ; Heat transfer ; Heat transfer coefficients ; Neutrons ; Nozzles ; Nuclear Energy ; Nuclear Fusion ; Nuclear reactors ; Original Research ; Physics ; Physics and Astronomy ; Plasma Physics ; R&amp;D ; Research &amp; development ; Rotation ; Simulation ; Sustainable Development ; Titanium ; Tritium ; Verification</subject><ispartof>Journal of fusion energy, 2015-12, Vol.34 (6), p.1252-1256</ispartof><rights>Springer Science+Business Media New York 2015</rights><rights>COPYRIGHT 2015 Springer</rights><rights>Springer Science+Business Media New York 2015.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-1c297f0303baf007bf18842eaf029b0704683e3306fe7d91ed06661c820e328e3</citedby><cites>FETCH-LOGICAL-c425t-1c297f0303baf007bf18842eaf029b0704683e3306fe7d91ed06661c820e328e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10894-015-9952-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918308100?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72341</link.rule.ids></links><search><creatorcontrib>Wang, Gang</creatorcontrib><creatorcontrib>Wang, Zhen</creatorcontrib><creatorcontrib>Yu, Qianfeng</creatorcontrib><creatorcontrib>Song, Yong</creatorcontrib><creatorcontrib>Wu, Yican</creatorcontrib><creatorcontrib>Cheng, Wenlong</creatorcontrib><title>Heat Transfer Experiment and Simulation of the Verification Facility for High Power Rotating Tritium Target System</title><title>Journal of fusion energy</title><addtitle>J Fusion Energ</addtitle><description>High intensity D–T fusion neutron generator (HINEG) is important for research and development work of fusion reactors, of which the rotating target system is one of the key components. The design of the cooling technology principle verification facility both for tritium target systems of the 3 × 10 13 and 10 14  n/s HINEG was proposed. The facility employed the jet array cooling method. The first stage heat transfer experiment was carried out and the heat transfer processes was simulated by CFD method, which aimed at the investigations of the new cooling enhancement technology. The experimental results, which had a good agreement with the numerical simulation results, show that the maximum temperature of the target surface was about 89.4 °C under 60 kW heating condition and the average equivalent convection heat transfer coefficient of the jet array cooling was about 57,000 W/(m 2  K). All the results show that the verification facility could achieve the cooling requirement for 3 × 10 13  n/s neutron yield (60 kW) design objective and the jet array cooling enhancement technology was effective.</description><subject>Arrays</subject><subject>Convection cooling</subject><subject>Convection heating</subject><subject>Cooling</subject><subject>Design</subject><subject>Energy Systems</subject><subject>Experiments</subject><subject>Fusion reactors</subject><subject>Heat transfer</subject><subject>Heat transfer coefficients</subject><subject>Neutrons</subject><subject>Nozzles</subject><subject>Nuclear Energy</subject><subject>Nuclear Fusion</subject><subject>Nuclear reactors</subject><subject>Original Research</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Plasma Physics</subject><subject>R&amp;D</subject><subject>Research &amp; development</subject><subject>Rotation</subject><subject>Simulation</subject><subject>Sustainable Development</subject><subject>Titanium</subject><subject>Tritium</subject><subject>Verification</subject><issn>0164-0313</issn><issn>1572-9591</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kU9vGyEQxVHVSnXTfoDekHreZAb2DxyjKKkrRWrVOL0ivB42RF5wAav1tw_WRuqp4oCYeb8HzGPsM8IlAgxXGUHptgHsGq070eAbtsJuEI3uNL5lK8C-diXK9-xDzs8AoFWrVyytyRa-STZkR4nf_j1Q8jOFwm3Y8Qc_H_e2-Bh4dLw8Ef9V286PS-3Ojn7vy4m7mPjaT0_8R_xTXX7GUgVhqr6--OPMNzZNVPjDKReaP7J3zu4zfXrdL9jj3e3mZt3cf__67eb6vhlb0ZUGR6EHBxLk1rr6xa1DpVpB9SD0FgZoeyVJSugdDTuNtIO-73FUAkgKRfKCfVl8Dyn-PlIu5jkeU6hXGqFRSVB1clV1uagmuyfjg4sl2bGuHc1-jIGcr_XrAdtWD317BnABxhRzTuTMoU7MppNBMOcszJKFqVmYcxYGKyMWJldtmCj9e8r_oRekk4vc</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Wang, Gang</creator><creator>Wang, Zhen</creator><creator>Yu, Qianfeng</creator><creator>Song, Yong</creator><creator>Wu, Yican</creator><creator>Cheng, Wenlong</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20151201</creationdate><title>Heat Transfer Experiment and Simulation of the Verification Facility for High Power Rotating Tritium Target System</title><author>Wang, Gang ; Wang, Zhen ; Yu, Qianfeng ; Song, Yong ; Wu, Yican ; Cheng, Wenlong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-1c297f0303baf007bf18842eaf029b0704683e3306fe7d91ed06661c820e328e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Arrays</topic><topic>Convection cooling</topic><topic>Convection heating</topic><topic>Cooling</topic><topic>Design</topic><topic>Energy Systems</topic><topic>Experiments</topic><topic>Fusion reactors</topic><topic>Heat transfer</topic><topic>Heat transfer coefficients</topic><topic>Neutrons</topic><topic>Nozzles</topic><topic>Nuclear Energy</topic><topic>Nuclear Fusion</topic><topic>Nuclear reactors</topic><topic>Original Research</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Plasma Physics</topic><topic>R&amp;D</topic><topic>Research &amp; development</topic><topic>Rotation</topic><topic>Simulation</topic><topic>Sustainable Development</topic><topic>Titanium</topic><topic>Tritium</topic><topic>Verification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Gang</creatorcontrib><creatorcontrib>Wang, Zhen</creatorcontrib><creatorcontrib>Yu, Qianfeng</creatorcontrib><creatorcontrib>Song, Yong</creatorcontrib><creatorcontrib>Wu, Yican</creatorcontrib><creatorcontrib>Cheng, Wenlong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Journal of fusion energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Gang</au><au>Wang, Zhen</au><au>Yu, Qianfeng</au><au>Song, Yong</au><au>Wu, Yican</au><au>Cheng, Wenlong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heat Transfer Experiment and Simulation of the Verification Facility for High Power Rotating Tritium Target System</atitle><jtitle>Journal of fusion energy</jtitle><stitle>J Fusion Energ</stitle><date>2015-12-01</date><risdate>2015</risdate><volume>34</volume><issue>6</issue><spage>1252</spage><epage>1256</epage><pages>1252-1256</pages><issn>0164-0313</issn><eissn>1572-9591</eissn><abstract>High intensity D–T fusion neutron generator (HINEG) is important for research and development work of fusion reactors, of which the rotating target system is one of the key components. The design of the cooling technology principle verification facility both for tritium target systems of the 3 × 10 13 and 10 14  n/s HINEG was proposed. The facility employed the jet array cooling method. The first stage heat transfer experiment was carried out and the heat transfer processes was simulated by CFD method, which aimed at the investigations of the new cooling enhancement technology. The experimental results, which had a good agreement with the numerical simulation results, show that the maximum temperature of the target surface was about 89.4 °C under 60 kW heating condition and the average equivalent convection heat transfer coefficient of the jet array cooling was about 57,000 W/(m 2  K). All the results show that the verification facility could achieve the cooling requirement for 3 × 10 13  n/s neutron yield (60 kW) design objective and the jet array cooling enhancement technology was effective.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10894-015-9952-1</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0164-0313
ispartof Journal of fusion energy, 2015-12, Vol.34 (6), p.1252-1256
issn 0164-0313
1572-9591
language eng
recordid cdi_proquest_journals_2918308100
source ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Arrays
Convection cooling
Convection heating
Cooling
Design
Energy Systems
Experiments
Fusion reactors
Heat transfer
Heat transfer coefficients
Neutrons
Nozzles
Nuclear Energy
Nuclear Fusion
Nuclear reactors
Original Research
Physics
Physics and Astronomy
Plasma Physics
R&D
Research & development
Rotation
Simulation
Sustainable Development
Titanium
Tritium
Verification
title Heat Transfer Experiment and Simulation of the Verification Facility for High Power Rotating Tritium Target System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T06%3A29%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heat%20Transfer%20Experiment%20and%20Simulation%20of%20the%20Verification%20Facility%20for%20High%20Power%20Rotating%20Tritium%20Target%20System&rft.jtitle=Journal%20of%20fusion%20energy&rft.au=Wang,%20Gang&rft.date=2015-12-01&rft.volume=34&rft.issue=6&rft.spage=1252&rft.epage=1256&rft.pages=1252-1256&rft.issn=0164-0313&rft.eissn=1572-9591&rft_id=info:doi/10.1007/s10894-015-9952-1&rft_dat=%3Cgale_proqu%3EA714497640%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918308100&rft_id=info:pmid/&rft_galeid=A714497640&rfr_iscdi=true