Heat Transfer Experiment and Simulation of the Verification Facility for High Power Rotating Tritium Target System
High intensity D–T fusion neutron generator (HINEG) is important for research and development work of fusion reactors, of which the rotating target system is one of the key components. The design of the cooling technology principle verification facility both for tritium target systems of the 3 × 10...
Gespeichert in:
Veröffentlicht in: | Journal of fusion energy 2015-12, Vol.34 (6), p.1252-1256 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1256 |
---|---|
container_issue | 6 |
container_start_page | 1252 |
container_title | Journal of fusion energy |
container_volume | 34 |
creator | Wang, Gang Wang, Zhen Yu, Qianfeng Song, Yong Wu, Yican Cheng, Wenlong |
description | High intensity D–T fusion neutron generator (HINEG) is important for research and development work of fusion reactors, of which the rotating target system is one of the key components. The design of the cooling technology principle verification facility both for tritium target systems of the 3 × 10
13
and 10
14
n/s HINEG was proposed. The facility employed the jet array cooling method. The first stage heat transfer experiment was carried out and the heat transfer processes was simulated by CFD method, which aimed at the investigations of the new cooling enhancement technology. The experimental results, which had a good agreement with the numerical simulation results, show that the maximum temperature of the target surface was about 89.4 °C under 60 kW heating condition and the average equivalent convection heat transfer coefficient of the jet array cooling was about 57,000 W/(m
2
K). All the results show that the verification facility could achieve the cooling requirement for 3 × 10
13
n/s neutron yield (60 kW) design objective and the jet array cooling enhancement technology was effective. |
doi_str_mv | 10.1007/s10894-015-9952-1 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2918308100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A714497640</galeid><sourcerecordid>A714497640</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-1c297f0303baf007bf18842eaf029b0704683e3306fe7d91ed06661c820e328e3</originalsourceid><addsrcrecordid>eNp1kU9vGyEQxVHVSnXTfoDekHreZAb2DxyjKKkrRWrVOL0ivB42RF5wAav1tw_WRuqp4oCYeb8HzGPsM8IlAgxXGUHptgHsGq070eAbtsJuEI3uNL5lK8C-diXK9-xDzs8AoFWrVyytyRa-STZkR4nf_j1Q8jOFwm3Y8Qc_H_e2-Bh4dLw8Ef9V286PS-3Ojn7vy4m7mPjaT0_8R_xTXX7GUgVhqr6--OPMNzZNVPjDKReaP7J3zu4zfXrdL9jj3e3mZt3cf__67eb6vhlb0ZUGR6EHBxLk1rr6xa1DpVpB9SD0FgZoeyVJSugdDTuNtIO-73FUAkgKRfKCfVl8Dyn-PlIu5jkeU6hXGqFRSVB1clV1uagmuyfjg4sl2bGuHc1-jIGcr_XrAdtWD317BnABxhRzTuTMoU7MppNBMOcszJKFqVmYcxYGKyMWJldtmCj9e8r_oRekk4vc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918308100</pqid></control><display><type>article</type><title>Heat Transfer Experiment and Simulation of the Verification Facility for High Power Rotating Tritium Target System</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Wang, Gang ; Wang, Zhen ; Yu, Qianfeng ; Song, Yong ; Wu, Yican ; Cheng, Wenlong</creator><creatorcontrib>Wang, Gang ; Wang, Zhen ; Yu, Qianfeng ; Song, Yong ; Wu, Yican ; Cheng, Wenlong</creatorcontrib><description>High intensity D–T fusion neutron generator (HINEG) is important for research and development work of fusion reactors, of which the rotating target system is one of the key components. The design of the cooling technology principle verification facility both for tritium target systems of the 3 × 10
13
and 10
14
n/s HINEG was proposed. The facility employed the jet array cooling method. The first stage heat transfer experiment was carried out and the heat transfer processes was simulated by CFD method, which aimed at the investigations of the new cooling enhancement technology. The experimental results, which had a good agreement with the numerical simulation results, show that the maximum temperature of the target surface was about 89.4 °C under 60 kW heating condition and the average equivalent convection heat transfer coefficient of the jet array cooling was about 57,000 W/(m
2
K). All the results show that the verification facility could achieve the cooling requirement for 3 × 10
13
n/s neutron yield (60 kW) design objective and the jet array cooling enhancement technology was effective.</description><identifier>ISSN: 0164-0313</identifier><identifier>EISSN: 1572-9591</identifier><identifier>DOI: 10.1007/s10894-015-9952-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Arrays ; Convection cooling ; Convection heating ; Cooling ; Design ; Energy Systems ; Experiments ; Fusion reactors ; Heat transfer ; Heat transfer coefficients ; Neutrons ; Nozzles ; Nuclear Energy ; Nuclear Fusion ; Nuclear reactors ; Original Research ; Physics ; Physics and Astronomy ; Plasma Physics ; R&D ; Research & development ; Rotation ; Simulation ; Sustainable Development ; Titanium ; Tritium ; Verification</subject><ispartof>Journal of fusion energy, 2015-12, Vol.34 (6), p.1252-1256</ispartof><rights>Springer Science+Business Media New York 2015</rights><rights>COPYRIGHT 2015 Springer</rights><rights>Springer Science+Business Media New York 2015.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-1c297f0303baf007bf18842eaf029b0704683e3306fe7d91ed06661c820e328e3</citedby><cites>FETCH-LOGICAL-c425t-1c297f0303baf007bf18842eaf029b0704683e3306fe7d91ed06661c820e328e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10894-015-9952-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918308100?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72341</link.rule.ids></links><search><creatorcontrib>Wang, Gang</creatorcontrib><creatorcontrib>Wang, Zhen</creatorcontrib><creatorcontrib>Yu, Qianfeng</creatorcontrib><creatorcontrib>Song, Yong</creatorcontrib><creatorcontrib>Wu, Yican</creatorcontrib><creatorcontrib>Cheng, Wenlong</creatorcontrib><title>Heat Transfer Experiment and Simulation of the Verification Facility for High Power Rotating Tritium Target System</title><title>Journal of fusion energy</title><addtitle>J Fusion Energ</addtitle><description>High intensity D–T fusion neutron generator (HINEG) is important for research and development work of fusion reactors, of which the rotating target system is one of the key components. The design of the cooling technology principle verification facility both for tritium target systems of the 3 × 10
13
and 10
14
n/s HINEG was proposed. The facility employed the jet array cooling method. The first stage heat transfer experiment was carried out and the heat transfer processes was simulated by CFD method, which aimed at the investigations of the new cooling enhancement technology. The experimental results, which had a good agreement with the numerical simulation results, show that the maximum temperature of the target surface was about 89.4 °C under 60 kW heating condition and the average equivalent convection heat transfer coefficient of the jet array cooling was about 57,000 W/(m
2
K). All the results show that the verification facility could achieve the cooling requirement for 3 × 10
13
n/s neutron yield (60 kW) design objective and the jet array cooling enhancement technology was effective.</description><subject>Arrays</subject><subject>Convection cooling</subject><subject>Convection heating</subject><subject>Cooling</subject><subject>Design</subject><subject>Energy Systems</subject><subject>Experiments</subject><subject>Fusion reactors</subject><subject>Heat transfer</subject><subject>Heat transfer coefficients</subject><subject>Neutrons</subject><subject>Nozzles</subject><subject>Nuclear Energy</subject><subject>Nuclear Fusion</subject><subject>Nuclear reactors</subject><subject>Original Research</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Plasma Physics</subject><subject>R&D</subject><subject>Research & development</subject><subject>Rotation</subject><subject>Simulation</subject><subject>Sustainable Development</subject><subject>Titanium</subject><subject>Tritium</subject><subject>Verification</subject><issn>0164-0313</issn><issn>1572-9591</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kU9vGyEQxVHVSnXTfoDekHreZAb2DxyjKKkrRWrVOL0ivB42RF5wAav1tw_WRuqp4oCYeb8HzGPsM8IlAgxXGUHptgHsGq070eAbtsJuEI3uNL5lK8C-diXK9-xDzs8AoFWrVyytyRa-STZkR4nf_j1Q8jOFwm3Y8Qc_H_e2-Bh4dLw8Ef9V286PS-3Ojn7vy4m7mPjaT0_8R_xTXX7GUgVhqr6--OPMNzZNVPjDKReaP7J3zu4zfXrdL9jj3e3mZt3cf__67eb6vhlb0ZUGR6EHBxLk1rr6xa1DpVpB9SD0FgZoeyVJSugdDTuNtIO-73FUAkgKRfKCfVl8Dyn-PlIu5jkeU6hXGqFRSVB1clV1uagmuyfjg4sl2bGuHc1-jIGcr_XrAdtWD317BnABxhRzTuTMoU7MppNBMOcszJKFqVmYcxYGKyMWJldtmCj9e8r_oRekk4vc</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Wang, Gang</creator><creator>Wang, Zhen</creator><creator>Yu, Qianfeng</creator><creator>Song, Yong</creator><creator>Wu, Yican</creator><creator>Cheng, Wenlong</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20151201</creationdate><title>Heat Transfer Experiment and Simulation of the Verification Facility for High Power Rotating Tritium Target System</title><author>Wang, Gang ; Wang, Zhen ; Yu, Qianfeng ; Song, Yong ; Wu, Yican ; Cheng, Wenlong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-1c297f0303baf007bf18842eaf029b0704683e3306fe7d91ed06661c820e328e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Arrays</topic><topic>Convection cooling</topic><topic>Convection heating</topic><topic>Cooling</topic><topic>Design</topic><topic>Energy Systems</topic><topic>Experiments</topic><topic>Fusion reactors</topic><topic>Heat transfer</topic><topic>Heat transfer coefficients</topic><topic>Neutrons</topic><topic>Nozzles</topic><topic>Nuclear Energy</topic><topic>Nuclear Fusion</topic><topic>Nuclear reactors</topic><topic>Original Research</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Plasma Physics</topic><topic>R&D</topic><topic>Research & development</topic><topic>Rotation</topic><topic>Simulation</topic><topic>Sustainable Development</topic><topic>Titanium</topic><topic>Tritium</topic><topic>Verification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Gang</creatorcontrib><creatorcontrib>Wang, Zhen</creatorcontrib><creatorcontrib>Yu, Qianfeng</creatorcontrib><creatorcontrib>Song, Yong</creatorcontrib><creatorcontrib>Wu, Yican</creatorcontrib><creatorcontrib>Cheng, Wenlong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Journal of fusion energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Gang</au><au>Wang, Zhen</au><au>Yu, Qianfeng</au><au>Song, Yong</au><au>Wu, Yican</au><au>Cheng, Wenlong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heat Transfer Experiment and Simulation of the Verification Facility for High Power Rotating Tritium Target System</atitle><jtitle>Journal of fusion energy</jtitle><stitle>J Fusion Energ</stitle><date>2015-12-01</date><risdate>2015</risdate><volume>34</volume><issue>6</issue><spage>1252</spage><epage>1256</epage><pages>1252-1256</pages><issn>0164-0313</issn><eissn>1572-9591</eissn><abstract>High intensity D–T fusion neutron generator (HINEG) is important for research and development work of fusion reactors, of which the rotating target system is one of the key components. The design of the cooling technology principle verification facility both for tritium target systems of the 3 × 10
13
and 10
14
n/s HINEG was proposed. The facility employed the jet array cooling method. The first stage heat transfer experiment was carried out and the heat transfer processes was simulated by CFD method, which aimed at the investigations of the new cooling enhancement technology. The experimental results, which had a good agreement with the numerical simulation results, show that the maximum temperature of the target surface was about 89.4 °C under 60 kW heating condition and the average equivalent convection heat transfer coefficient of the jet array cooling was about 57,000 W/(m
2
K). All the results show that the verification facility could achieve the cooling requirement for 3 × 10
13
n/s neutron yield (60 kW) design objective and the jet array cooling enhancement technology was effective.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10894-015-9952-1</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0164-0313 |
ispartof | Journal of fusion energy, 2015-12, Vol.34 (6), p.1252-1256 |
issn | 0164-0313 1572-9591 |
language | eng |
recordid | cdi_proquest_journals_2918308100 |
source | ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Arrays Convection cooling Convection heating Cooling Design Energy Systems Experiments Fusion reactors Heat transfer Heat transfer coefficients Neutrons Nozzles Nuclear Energy Nuclear Fusion Nuclear reactors Original Research Physics Physics and Astronomy Plasma Physics R&D Research & development Rotation Simulation Sustainable Development Titanium Tritium Verification |
title | Heat Transfer Experiment and Simulation of the Verification Facility for High Power Rotating Tritium Target System |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T06%3A29%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heat%20Transfer%20Experiment%20and%20Simulation%20of%20the%20Verification%20Facility%20for%20High%20Power%20Rotating%20Tritium%20Target%20System&rft.jtitle=Journal%20of%20fusion%20energy&rft.au=Wang,%20Gang&rft.date=2015-12-01&rft.volume=34&rft.issue=6&rft.spage=1252&rft.epage=1256&rft.pages=1252-1256&rft.issn=0164-0313&rft.eissn=1572-9591&rft_id=info:doi/10.1007/s10894-015-9952-1&rft_dat=%3Cgale_proqu%3EA714497640%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918308100&rft_id=info:pmid/&rft_galeid=A714497640&rfr_iscdi=true |