Simulation of Targets Feeding Pipe Rupture in Wendelstein 7-X Facility Using RELAP5 and COCOSYS Codes

Wendelstein nuclear fusion device W7-X is a stellarator type experimental device, developed by Max Planck Institute of plasma physics. Rupture of one of the 40 mm inner diameter coolant pipes providing water for the divertor targets during the “baking” regime of the facility operation is considered...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fusion energy 2012-10, Vol.31 (5), p.506-517
Hauptverfasser: Kaliatka, T., Povilaitis, M., Kaliatka, A., Urbonavicius, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 517
container_issue 5
container_start_page 506
container_title Journal of fusion energy
container_volume 31
creator Kaliatka, T.
Povilaitis, M.
Kaliatka, A.
Urbonavicius, E.
description Wendelstein nuclear fusion device W7-X is a stellarator type experimental device, developed by Max Planck Institute of plasma physics. Rupture of one of the 40 mm inner diameter coolant pipes providing water for the divertor targets during the “baking” regime of the facility operation is considered to be the most severe accident in terms of the plasma vessel pressurization. “Baking” regime is the regime of the facility operation during which plasma vessel structures are heated to the temperature acceptable for the plasma ignition in the vessel. This paper presents the model of W7-X cooling system (pumps, valves, pipes, hydro-accumulators, and heat exchangers), developed using thermal–hydraulic state-of-the-art RELAP5 Mod3.3 code, and model of plasma vessel, developed by employing the lumped-parameter code COCOSYS. Using both models the numerical simulation of processes in W7-X cooling system and plasma vessel has been performed. The results of simulation showed, that the automatic valve closure time 1 s is the most acceptable (no water hammer effect occurs) and selected area of the burst disk is sufficient to prevent pressure in the plasma vessel.
doi_str_mv 10.1007/s10894-011-9502-4
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2918307624</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A714498368</galeid><sourcerecordid>A714498368</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-6a0c46fa15ad68bb4313fdbf2359bd618308c5371dcf271e93b9f835f0e1b6bf3</originalsourceid><addsrcrecordid>eNp1kM1u3CAUhVHVSp2mfYDukKounYDBGJYjK9NWGmmiTKK2K4ThMiLy4CnYi7x9sRylq4oFP_c79x4OQp8puaaEtDeZEql4RSitVEPqir9BG9q0dbkp-hZtCBWlyih7jz7k_EQIUZKrDYJjOM-DmcIY8ejxg0knmDLeAbgQT_guXADfz5dpToBDxD8hOhjyBOXcVr_wztgwhOkZP-YFv7_db-8abKLD3aE7HH8fcTc6yB_RO2-GDJ9e9iv0uLt96L5X-8O3H912X1kmm6kShlguvKGNcUL2PS9-vet9zRrVO0ElI9I2rKXO-rqloFivvGSNJ0B70Xt2hb6sfS9p_DNDnvTTOKdYRupaLfJW1LxQ1yt1MgPoEP04JWPLcnAOdozgQ3nftpRzJZmQRUBXgU1jzgm8vqRwNulZU6KX-PUavy7x6yV-vQz5-mLFZGsGn0y0Ib8Ka1H-prgqXL1yuZTiCdI_y_9v_hdvZZJw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918307624</pqid></control><display><type>article</type><title>Simulation of Targets Feeding Pipe Rupture in Wendelstein 7-X Facility Using RELAP5 and COCOSYS Codes</title><source>SpringerNature Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Kaliatka, T. ; Povilaitis, M. ; Kaliatka, A. ; Urbonavicius, E.</creator><creatorcontrib>Kaliatka, T. ; Povilaitis, M. ; Kaliatka, A. ; Urbonavicius, E.</creatorcontrib><description>Wendelstein nuclear fusion device W7-X is a stellarator type experimental device, developed by Max Planck Institute of plasma physics. Rupture of one of the 40 mm inner diameter coolant pipes providing water for the divertor targets during the “baking” regime of the facility operation is considered to be the most severe accident in terms of the plasma vessel pressurization. “Baking” regime is the regime of the facility operation during which plasma vessel structures are heated to the temperature acceptable for the plasma ignition in the vessel. This paper presents the model of W7-X cooling system (pumps, valves, pipes, hydro-accumulators, and heat exchangers), developed using thermal–hydraulic state-of-the-art RELAP5 Mod3.3 code, and model of plasma vessel, developed by employing the lumped-parameter code COCOSYS. Using both models the numerical simulation of processes in W7-X cooling system and plasma vessel has been performed. The results of simulation showed, that the automatic valve closure time 1 s is the most acceptable (no water hammer effect occurs) and selected area of the burst disk is sufficient to prevent pressure in the plasma vessel.</description><identifier>ISSN: 0164-0313</identifier><identifier>EISSN: 1572-9591</identifier><identifier>DOI: 10.1007/s10894-011-9502-4</identifier><identifier>CODEN: JFENDS</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Analysis ; Applied sciences ; Baking ; Circuits ; Codes ; Controled nuclear fusion plants ; Cooling ; Cooling systems ; Energy ; Energy Systems ; Energy. Thermal use of fuels ; Exact sciences and technology ; Flow velocity ; Fusion ; Hammers ; Heat ; Heat exchangers ; Hydraulics ; Installations for energy generation and conversion: thermal and electrical energy ; Mathematical models ; Nuclear Energy ; Nuclear Fusion ; Nuclear power plants ; Nuclear reactors ; Numerical analysis ; Physics ; Physics and Astronomy ; Pipes ; Plasma ; Plasma Physics ; Review Article ; Simulation ; Sustainable Development ; Tokamaks ; Vessels ; Water hammer</subject><ispartof>Journal of fusion energy, 2012-10, Vol.31 (5), p.506-517</ispartof><rights>Springer Science+Business Media, LLC 2011</rights><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2012 Springer</rights><rights>Springer Science+Business Media, LLC 2011.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-6a0c46fa15ad68bb4313fdbf2359bd618308c5371dcf271e93b9f835f0e1b6bf3</citedby><cites>FETCH-LOGICAL-c385t-6a0c46fa15ad68bb4313fdbf2359bd618308c5371dcf271e93b9f835f0e1b6bf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10894-011-9502-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918307624?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26313949$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kaliatka, T.</creatorcontrib><creatorcontrib>Povilaitis, M.</creatorcontrib><creatorcontrib>Kaliatka, A.</creatorcontrib><creatorcontrib>Urbonavicius, E.</creatorcontrib><title>Simulation of Targets Feeding Pipe Rupture in Wendelstein 7-X Facility Using RELAP5 and COCOSYS Codes</title><title>Journal of fusion energy</title><addtitle>J Fusion Energ</addtitle><description>Wendelstein nuclear fusion device W7-X is a stellarator type experimental device, developed by Max Planck Institute of plasma physics. Rupture of one of the 40 mm inner diameter coolant pipes providing water for the divertor targets during the “baking” regime of the facility operation is considered to be the most severe accident in terms of the plasma vessel pressurization. “Baking” regime is the regime of the facility operation during which plasma vessel structures are heated to the temperature acceptable for the plasma ignition in the vessel. This paper presents the model of W7-X cooling system (pumps, valves, pipes, hydro-accumulators, and heat exchangers), developed using thermal–hydraulic state-of-the-art RELAP5 Mod3.3 code, and model of plasma vessel, developed by employing the lumped-parameter code COCOSYS. Using both models the numerical simulation of processes in W7-X cooling system and plasma vessel has been performed. The results of simulation showed, that the automatic valve closure time 1 s is the most acceptable (no water hammer effect occurs) and selected area of the burst disk is sufficient to prevent pressure in the plasma vessel.</description><subject>Analysis</subject><subject>Applied sciences</subject><subject>Baking</subject><subject>Circuits</subject><subject>Codes</subject><subject>Controled nuclear fusion plants</subject><subject>Cooling</subject><subject>Cooling systems</subject><subject>Energy</subject><subject>Energy Systems</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Flow velocity</subject><subject>Fusion</subject><subject>Hammers</subject><subject>Heat</subject><subject>Heat exchangers</subject><subject>Hydraulics</subject><subject>Installations for energy generation and conversion: thermal and electrical energy</subject><subject>Mathematical models</subject><subject>Nuclear Energy</subject><subject>Nuclear Fusion</subject><subject>Nuclear power plants</subject><subject>Nuclear reactors</subject><subject>Numerical analysis</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Pipes</subject><subject>Plasma</subject><subject>Plasma Physics</subject><subject>Review Article</subject><subject>Simulation</subject><subject>Sustainable Development</subject><subject>Tokamaks</subject><subject>Vessels</subject><subject>Water hammer</subject><issn>0164-0313</issn><issn>1572-9591</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kM1u3CAUhVHVSp2mfYDukKounYDBGJYjK9NWGmmiTKK2K4ThMiLy4CnYi7x9sRylq4oFP_c79x4OQp8puaaEtDeZEql4RSitVEPqir9BG9q0dbkp-hZtCBWlyih7jz7k_EQIUZKrDYJjOM-DmcIY8ejxg0knmDLeAbgQT_guXADfz5dpToBDxD8hOhjyBOXcVr_wztgwhOkZP-YFv7_db-8abKLD3aE7HH8fcTc6yB_RO2-GDJ9e9iv0uLt96L5X-8O3H912X1kmm6kShlguvKGNcUL2PS9-vet9zRrVO0ElI9I2rKXO-rqloFivvGSNJ0B70Xt2hb6sfS9p_DNDnvTTOKdYRupaLfJW1LxQ1yt1MgPoEP04JWPLcnAOdozgQ3nftpRzJZmQRUBXgU1jzgm8vqRwNulZU6KX-PUavy7x6yV-vQz5-mLFZGsGn0y0Ib8Ka1H-prgqXL1yuZTiCdI_y_9v_hdvZZJw</recordid><startdate>20121001</startdate><enddate>20121001</enddate><creator>Kaliatka, T.</creator><creator>Povilaitis, M.</creator><creator>Kaliatka, A.</creator><creator>Urbonavicius, E.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20121001</creationdate><title>Simulation of Targets Feeding Pipe Rupture in Wendelstein 7-X Facility Using RELAP5 and COCOSYS Codes</title><author>Kaliatka, T. ; Povilaitis, M. ; Kaliatka, A. ; Urbonavicius, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-6a0c46fa15ad68bb4313fdbf2359bd618308c5371dcf271e93b9f835f0e1b6bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Analysis</topic><topic>Applied sciences</topic><topic>Baking</topic><topic>Circuits</topic><topic>Codes</topic><topic>Controled nuclear fusion plants</topic><topic>Cooling</topic><topic>Cooling systems</topic><topic>Energy</topic><topic>Energy Systems</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Flow velocity</topic><topic>Fusion</topic><topic>Hammers</topic><topic>Heat</topic><topic>Heat exchangers</topic><topic>Hydraulics</topic><topic>Installations for energy generation and conversion: thermal and electrical energy</topic><topic>Mathematical models</topic><topic>Nuclear Energy</topic><topic>Nuclear Fusion</topic><topic>Nuclear power plants</topic><topic>Nuclear reactors</topic><topic>Numerical analysis</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Pipes</topic><topic>Plasma</topic><topic>Plasma Physics</topic><topic>Review Article</topic><topic>Simulation</topic><topic>Sustainable Development</topic><topic>Tokamaks</topic><topic>Vessels</topic><topic>Water hammer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaliatka, T.</creatorcontrib><creatorcontrib>Povilaitis, M.</creatorcontrib><creatorcontrib>Kaliatka, A.</creatorcontrib><creatorcontrib>Urbonavicius, E.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Journal of fusion energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaliatka, T.</au><au>Povilaitis, M.</au><au>Kaliatka, A.</au><au>Urbonavicius, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of Targets Feeding Pipe Rupture in Wendelstein 7-X Facility Using RELAP5 and COCOSYS Codes</atitle><jtitle>Journal of fusion energy</jtitle><stitle>J Fusion Energ</stitle><date>2012-10-01</date><risdate>2012</risdate><volume>31</volume><issue>5</issue><spage>506</spage><epage>517</epage><pages>506-517</pages><issn>0164-0313</issn><eissn>1572-9591</eissn><coden>JFENDS</coden><abstract>Wendelstein nuclear fusion device W7-X is a stellarator type experimental device, developed by Max Planck Institute of plasma physics. Rupture of one of the 40 mm inner diameter coolant pipes providing water for the divertor targets during the “baking” regime of the facility operation is considered to be the most severe accident in terms of the plasma vessel pressurization. “Baking” regime is the regime of the facility operation during which plasma vessel structures are heated to the temperature acceptable for the plasma ignition in the vessel. This paper presents the model of W7-X cooling system (pumps, valves, pipes, hydro-accumulators, and heat exchangers), developed using thermal–hydraulic state-of-the-art RELAP5 Mod3.3 code, and model of plasma vessel, developed by employing the lumped-parameter code COCOSYS. Using both models the numerical simulation of processes in W7-X cooling system and plasma vessel has been performed. The results of simulation showed, that the automatic valve closure time 1 s is the most acceptable (no water hammer effect occurs) and selected area of the burst disk is sufficient to prevent pressure in the plasma vessel.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10894-011-9502-4</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0164-0313
ispartof Journal of fusion energy, 2012-10, Vol.31 (5), p.506-517
issn 0164-0313
1572-9591
language eng
recordid cdi_proquest_journals_2918307624
source SpringerNature Journals; ProQuest Central UK/Ireland; ProQuest Central
subjects Analysis
Applied sciences
Baking
Circuits
Codes
Controled nuclear fusion plants
Cooling
Cooling systems
Energy
Energy Systems
Energy. Thermal use of fuels
Exact sciences and technology
Flow velocity
Fusion
Hammers
Heat
Heat exchangers
Hydraulics
Installations for energy generation and conversion: thermal and electrical energy
Mathematical models
Nuclear Energy
Nuclear Fusion
Nuclear power plants
Nuclear reactors
Numerical analysis
Physics
Physics and Astronomy
Pipes
Plasma
Plasma Physics
Review Article
Simulation
Sustainable Development
Tokamaks
Vessels
Water hammer
title Simulation of Targets Feeding Pipe Rupture in Wendelstein 7-X Facility Using RELAP5 and COCOSYS Codes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T11%3A02%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%20Targets%20Feeding%20Pipe%20Rupture%20in%20Wendelstein%207-X%20Facility%20Using%20RELAP5%20and%20COCOSYS%20Codes&rft.jtitle=Journal%20of%20fusion%20energy&rft.au=Kaliatka,%20T.&rft.date=2012-10-01&rft.volume=31&rft.issue=5&rft.spage=506&rft.epage=517&rft.pages=506-517&rft.issn=0164-0313&rft.eissn=1572-9591&rft.coden=JFENDS&rft_id=info:doi/10.1007/s10894-011-9502-4&rft_dat=%3Cgale_proqu%3EA714498368%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918307624&rft_id=info:pmid/&rft_galeid=A714498368&rfr_iscdi=true