Simulation of Targets Feeding Pipe Rupture in Wendelstein 7-X Facility Using RELAP5 and COCOSYS Codes
Wendelstein nuclear fusion device W7-X is a stellarator type experimental device, developed by Max Planck Institute of plasma physics. Rupture of one of the 40 mm inner diameter coolant pipes providing water for the divertor targets during the “baking” regime of the facility operation is considered...
Gespeichert in:
Veröffentlicht in: | Journal of fusion energy 2012-10, Vol.31 (5), p.506-517 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 517 |
---|---|
container_issue | 5 |
container_start_page | 506 |
container_title | Journal of fusion energy |
container_volume | 31 |
creator | Kaliatka, T. Povilaitis, M. Kaliatka, A. Urbonavicius, E. |
description | Wendelstein nuclear fusion device W7-X is a stellarator type experimental device, developed by Max Planck Institute of plasma physics. Rupture of one of the 40 mm inner diameter coolant pipes providing water for the divertor targets during the “baking” regime of the facility operation is considered to be the most severe accident in terms of the plasma vessel pressurization. “Baking” regime is the regime of the facility operation during which plasma vessel structures are heated to the temperature acceptable for the plasma ignition in the vessel. This paper presents the model of W7-X cooling system (pumps, valves, pipes, hydro-accumulators, and heat exchangers), developed using thermal–hydraulic state-of-the-art RELAP5 Mod3.3 code, and model of plasma vessel, developed by employing the lumped-parameter code COCOSYS. Using both models the numerical simulation of processes in W7-X cooling system and plasma vessel has been performed. The results of simulation showed, that the automatic valve closure time 1 s is the most acceptable (no water hammer effect occurs) and selected area of the burst disk is sufficient to prevent pressure in the plasma vessel. |
doi_str_mv | 10.1007/s10894-011-9502-4 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2918307624</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A714498368</galeid><sourcerecordid>A714498368</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-6a0c46fa15ad68bb4313fdbf2359bd618308c5371dcf271e93b9f835f0e1b6bf3</originalsourceid><addsrcrecordid>eNp1kM1u3CAUhVHVSp2mfYDukKounYDBGJYjK9NWGmmiTKK2K4ThMiLy4CnYi7x9sRylq4oFP_c79x4OQp8puaaEtDeZEql4RSitVEPqir9BG9q0dbkp-hZtCBWlyih7jz7k_EQIUZKrDYJjOM-DmcIY8ejxg0knmDLeAbgQT_guXADfz5dpToBDxD8hOhjyBOXcVr_wztgwhOkZP-YFv7_db-8abKLD3aE7HH8fcTc6yB_RO2-GDJ9e9iv0uLt96L5X-8O3H912X1kmm6kShlguvKGNcUL2PS9-vet9zRrVO0ElI9I2rKXO-rqloFivvGSNJ0B70Xt2hb6sfS9p_DNDnvTTOKdYRupaLfJW1LxQ1yt1MgPoEP04JWPLcnAOdozgQ3nftpRzJZmQRUBXgU1jzgm8vqRwNulZU6KX-PUavy7x6yV-vQz5-mLFZGsGn0y0Ib8Ka1H-prgqXL1yuZTiCdI_y_9v_hdvZZJw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918307624</pqid></control><display><type>article</type><title>Simulation of Targets Feeding Pipe Rupture in Wendelstein 7-X Facility Using RELAP5 and COCOSYS Codes</title><source>SpringerNature Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Kaliatka, T. ; Povilaitis, M. ; Kaliatka, A. ; Urbonavicius, E.</creator><creatorcontrib>Kaliatka, T. ; Povilaitis, M. ; Kaliatka, A. ; Urbonavicius, E.</creatorcontrib><description>Wendelstein nuclear fusion device W7-X is a stellarator type experimental device, developed by Max Planck Institute of plasma physics. Rupture of one of the 40 mm inner diameter coolant pipes providing water for the divertor targets during the “baking” regime of the facility operation is considered to be the most severe accident in terms of the plasma vessel pressurization. “Baking” regime is the regime of the facility operation during which plasma vessel structures are heated to the temperature acceptable for the plasma ignition in the vessel. This paper presents the model of W7-X cooling system (pumps, valves, pipes, hydro-accumulators, and heat exchangers), developed using thermal–hydraulic state-of-the-art RELAP5 Mod3.3 code, and model of plasma vessel, developed by employing the lumped-parameter code COCOSYS. Using both models the numerical simulation of processes in W7-X cooling system and plasma vessel has been performed. The results of simulation showed, that the automatic valve closure time 1 s is the most acceptable (no water hammer effect occurs) and selected area of the burst disk is sufficient to prevent pressure in the plasma vessel.</description><identifier>ISSN: 0164-0313</identifier><identifier>EISSN: 1572-9591</identifier><identifier>DOI: 10.1007/s10894-011-9502-4</identifier><identifier>CODEN: JFENDS</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Analysis ; Applied sciences ; Baking ; Circuits ; Codes ; Controled nuclear fusion plants ; Cooling ; Cooling systems ; Energy ; Energy Systems ; Energy. Thermal use of fuels ; Exact sciences and technology ; Flow velocity ; Fusion ; Hammers ; Heat ; Heat exchangers ; Hydraulics ; Installations for energy generation and conversion: thermal and electrical energy ; Mathematical models ; Nuclear Energy ; Nuclear Fusion ; Nuclear power plants ; Nuclear reactors ; Numerical analysis ; Physics ; Physics and Astronomy ; Pipes ; Plasma ; Plasma Physics ; Review Article ; Simulation ; Sustainable Development ; Tokamaks ; Vessels ; Water hammer</subject><ispartof>Journal of fusion energy, 2012-10, Vol.31 (5), p.506-517</ispartof><rights>Springer Science+Business Media, LLC 2011</rights><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2012 Springer</rights><rights>Springer Science+Business Media, LLC 2011.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-6a0c46fa15ad68bb4313fdbf2359bd618308c5371dcf271e93b9f835f0e1b6bf3</citedby><cites>FETCH-LOGICAL-c385t-6a0c46fa15ad68bb4313fdbf2359bd618308c5371dcf271e93b9f835f0e1b6bf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10894-011-9502-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918307624?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26313949$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kaliatka, T.</creatorcontrib><creatorcontrib>Povilaitis, M.</creatorcontrib><creatorcontrib>Kaliatka, A.</creatorcontrib><creatorcontrib>Urbonavicius, E.</creatorcontrib><title>Simulation of Targets Feeding Pipe Rupture in Wendelstein 7-X Facility Using RELAP5 and COCOSYS Codes</title><title>Journal of fusion energy</title><addtitle>J Fusion Energ</addtitle><description>Wendelstein nuclear fusion device W7-X is a stellarator type experimental device, developed by Max Planck Institute of plasma physics. Rupture of one of the 40 mm inner diameter coolant pipes providing water for the divertor targets during the “baking” regime of the facility operation is considered to be the most severe accident in terms of the plasma vessel pressurization. “Baking” regime is the regime of the facility operation during which plasma vessel structures are heated to the temperature acceptable for the plasma ignition in the vessel. This paper presents the model of W7-X cooling system (pumps, valves, pipes, hydro-accumulators, and heat exchangers), developed using thermal–hydraulic state-of-the-art RELAP5 Mod3.3 code, and model of plasma vessel, developed by employing the lumped-parameter code COCOSYS. Using both models the numerical simulation of processes in W7-X cooling system and plasma vessel has been performed. The results of simulation showed, that the automatic valve closure time 1 s is the most acceptable (no water hammer effect occurs) and selected area of the burst disk is sufficient to prevent pressure in the plasma vessel.</description><subject>Analysis</subject><subject>Applied sciences</subject><subject>Baking</subject><subject>Circuits</subject><subject>Codes</subject><subject>Controled nuclear fusion plants</subject><subject>Cooling</subject><subject>Cooling systems</subject><subject>Energy</subject><subject>Energy Systems</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Flow velocity</subject><subject>Fusion</subject><subject>Hammers</subject><subject>Heat</subject><subject>Heat exchangers</subject><subject>Hydraulics</subject><subject>Installations for energy generation and conversion: thermal and electrical energy</subject><subject>Mathematical models</subject><subject>Nuclear Energy</subject><subject>Nuclear Fusion</subject><subject>Nuclear power plants</subject><subject>Nuclear reactors</subject><subject>Numerical analysis</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Pipes</subject><subject>Plasma</subject><subject>Plasma Physics</subject><subject>Review Article</subject><subject>Simulation</subject><subject>Sustainable Development</subject><subject>Tokamaks</subject><subject>Vessels</subject><subject>Water hammer</subject><issn>0164-0313</issn><issn>1572-9591</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kM1u3CAUhVHVSp2mfYDukKounYDBGJYjK9NWGmmiTKK2K4ThMiLy4CnYi7x9sRylq4oFP_c79x4OQp8puaaEtDeZEql4RSitVEPqir9BG9q0dbkp-hZtCBWlyih7jz7k_EQIUZKrDYJjOM-DmcIY8ejxg0knmDLeAbgQT_guXADfz5dpToBDxD8hOhjyBOXcVr_wztgwhOkZP-YFv7_db-8abKLD3aE7HH8fcTc6yB_RO2-GDJ9e9iv0uLt96L5X-8O3H912X1kmm6kShlguvKGNcUL2PS9-vet9zRrVO0ElI9I2rKXO-rqloFivvGSNJ0B70Xt2hb6sfS9p_DNDnvTTOKdYRupaLfJW1LxQ1yt1MgPoEP04JWPLcnAOdozgQ3nftpRzJZmQRUBXgU1jzgm8vqRwNulZU6KX-PUavy7x6yV-vQz5-mLFZGsGn0y0Ib8Ka1H-prgqXL1yuZTiCdI_y_9v_hdvZZJw</recordid><startdate>20121001</startdate><enddate>20121001</enddate><creator>Kaliatka, T.</creator><creator>Povilaitis, M.</creator><creator>Kaliatka, A.</creator><creator>Urbonavicius, E.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20121001</creationdate><title>Simulation of Targets Feeding Pipe Rupture in Wendelstein 7-X Facility Using RELAP5 and COCOSYS Codes</title><author>Kaliatka, T. ; Povilaitis, M. ; Kaliatka, A. ; Urbonavicius, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-6a0c46fa15ad68bb4313fdbf2359bd618308c5371dcf271e93b9f835f0e1b6bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Analysis</topic><topic>Applied sciences</topic><topic>Baking</topic><topic>Circuits</topic><topic>Codes</topic><topic>Controled nuclear fusion plants</topic><topic>Cooling</topic><topic>Cooling systems</topic><topic>Energy</topic><topic>Energy Systems</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Flow velocity</topic><topic>Fusion</topic><topic>Hammers</topic><topic>Heat</topic><topic>Heat exchangers</topic><topic>Hydraulics</topic><topic>Installations for energy generation and conversion: thermal and electrical energy</topic><topic>Mathematical models</topic><topic>Nuclear Energy</topic><topic>Nuclear Fusion</topic><topic>Nuclear power plants</topic><topic>Nuclear reactors</topic><topic>Numerical analysis</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Pipes</topic><topic>Plasma</topic><topic>Plasma Physics</topic><topic>Review Article</topic><topic>Simulation</topic><topic>Sustainable Development</topic><topic>Tokamaks</topic><topic>Vessels</topic><topic>Water hammer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaliatka, T.</creatorcontrib><creatorcontrib>Povilaitis, M.</creatorcontrib><creatorcontrib>Kaliatka, A.</creatorcontrib><creatorcontrib>Urbonavicius, E.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Journal of fusion energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaliatka, T.</au><au>Povilaitis, M.</au><au>Kaliatka, A.</au><au>Urbonavicius, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of Targets Feeding Pipe Rupture in Wendelstein 7-X Facility Using RELAP5 and COCOSYS Codes</atitle><jtitle>Journal of fusion energy</jtitle><stitle>J Fusion Energ</stitle><date>2012-10-01</date><risdate>2012</risdate><volume>31</volume><issue>5</issue><spage>506</spage><epage>517</epage><pages>506-517</pages><issn>0164-0313</issn><eissn>1572-9591</eissn><coden>JFENDS</coden><abstract>Wendelstein nuclear fusion device W7-X is a stellarator type experimental device, developed by Max Planck Institute of plasma physics. Rupture of one of the 40 mm inner diameter coolant pipes providing water for the divertor targets during the “baking” regime of the facility operation is considered to be the most severe accident in terms of the plasma vessel pressurization. “Baking” regime is the regime of the facility operation during which plasma vessel structures are heated to the temperature acceptable for the plasma ignition in the vessel. This paper presents the model of W7-X cooling system (pumps, valves, pipes, hydro-accumulators, and heat exchangers), developed using thermal–hydraulic state-of-the-art RELAP5 Mod3.3 code, and model of plasma vessel, developed by employing the lumped-parameter code COCOSYS. Using both models the numerical simulation of processes in W7-X cooling system and plasma vessel has been performed. The results of simulation showed, that the automatic valve closure time 1 s is the most acceptable (no water hammer effect occurs) and selected area of the burst disk is sufficient to prevent pressure in the plasma vessel.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10894-011-9502-4</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0164-0313 |
ispartof | Journal of fusion energy, 2012-10, Vol.31 (5), p.506-517 |
issn | 0164-0313 1572-9591 |
language | eng |
recordid | cdi_proquest_journals_2918307624 |
source | SpringerNature Journals; ProQuest Central UK/Ireland; ProQuest Central |
subjects | Analysis Applied sciences Baking Circuits Codes Controled nuclear fusion plants Cooling Cooling systems Energy Energy Systems Energy. Thermal use of fuels Exact sciences and technology Flow velocity Fusion Hammers Heat Heat exchangers Hydraulics Installations for energy generation and conversion: thermal and electrical energy Mathematical models Nuclear Energy Nuclear Fusion Nuclear power plants Nuclear reactors Numerical analysis Physics Physics and Astronomy Pipes Plasma Plasma Physics Review Article Simulation Sustainable Development Tokamaks Vessels Water hammer |
title | Simulation of Targets Feeding Pipe Rupture in Wendelstein 7-X Facility Using RELAP5 and COCOSYS Codes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T11%3A02%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%20Targets%20Feeding%20Pipe%20Rupture%20in%20Wendelstein%207-X%20Facility%20Using%20RELAP5%20and%20COCOSYS%20Codes&rft.jtitle=Journal%20of%20fusion%20energy&rft.au=Kaliatka,%20T.&rft.date=2012-10-01&rft.volume=31&rft.issue=5&rft.spage=506&rft.epage=517&rft.pages=506-517&rft.issn=0164-0313&rft.eissn=1572-9591&rft.coden=JFENDS&rft_id=info:doi/10.1007/s10894-011-9502-4&rft_dat=%3Cgale_proqu%3EA714498368%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918307624&rft_id=info:pmid/&rft_galeid=A714498368&rfr_iscdi=true |