An area-efficient, robust, and reversible QCA-based Hamming code generator, error detector, and corrector: design and performance estimation
The inherent quasiadiabatic switching enabled by quantum-dot cellular automata (QCA) can realize transistorless computation to overcome the limitations of ultrascaled complementary metal–oxide–semiconductor (CMOS) technology. Reversible logic computing results in energy-efficient logic operations be...
Gespeichert in:
Veröffentlicht in: | Journal of computational electronics 2021-12, Vol.20 (6), p.2622-2647 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2647 |
---|---|
container_issue | 6 |
container_start_page | 2622 |
container_title | Journal of computational electronics |
container_volume | 20 |
creator | Kaity, Aishwarya Singh, Sangeeta |
description | The inherent quasiadiabatic switching enabled by quantum-dot cellular automata (QCA) can realize transistorless computation to overcome the limitations of ultrascaled complementary metal–oxide–semiconductor (CMOS) technology. Reversible logic computing results in energy-efficient logic operations because of the bijective relation between inputs and outputs, leading to no loss of bit information. A highly area-efficient, robust, and reversible QCA-based Hamming code generator, error detector, and message corrector circuit is reported herein for the first time. Hamming codes are linear error-correcting codes that can detect up to two-bit errors and correct one-bit errors but without detection of uncorrected errors. To implement the circuit, Feynman reversible logic is employed along with coplanar crossovers having 180° clock zones. The proposed circuit is single layer, ensuring easier realization. Here, complexity analysis in terms of the cell count, area coverage, latency, quantum cost, number of garbage outputs, QCA circuit cost, hazard analysis, etc. is also carried out for all the proposed circuits. The designed circuits have a smaller cell count, with area coverage of approximately 29.5% and latency on the order of 0.5–2.75 clock periods. Moreover, these QCA based circuits provide strong evidence that reversible logic-based QCA circuits can be efficiently deployed for these error detecting and correcting codes. |
doi_str_mv | 10.1007/s10825-021-01802-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918277151</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918277151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-5b75ea5695b239e029668e6a8bd7ff77f876a91440238ea577f9f1f2feaba2703</originalsourceid><addsrcrecordid>eNp9UE1LAzEQDaJgrf4BTwGvjSbZ7ibrrRS1QkEEPYfs7mTZ0k3qZCv4H_zRplvBm6f5eu_NzCPkWvBbwbm6i4JrmTMuBeNCc8n0CZmIXKVEZOr0kBclS4P8nFzEuOFccjkXE_K98NQiWAbOdXUHfphRDNU-pmh9QxE-AWNXbYG-LhesshEaurJ93_mW1qEB2oIHtEPAGQXEgLSBAeqxPgjUAXEs79Mgdq0fuztAF7C3vgYKceh6O3TBX5IzZ7cRrn7jlLw_PrwtV2z98vS8XKxZnYlyYHmlcrDpobySWQlclkWhobC6apRzSjmtCluK-ZzLTCdg6pROOOnAVlYqnk3JzVF3h-Fjn_abTdijTyuNLIWWSolcJJQ8omoMMSI4s8N0KH4Zwc3BdXN03STXzei60YmUHUkxgX0L-Cf9D-sH6ViGRQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918277151</pqid></control><display><type>article</type><title>An area-efficient, robust, and reversible QCA-based Hamming code generator, error detector, and corrector: design and performance estimation</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Kaity, Aishwarya ; Singh, Sangeeta</creator><creatorcontrib>Kaity, Aishwarya ; Singh, Sangeeta</creatorcontrib><description>The inherent quasiadiabatic switching enabled by quantum-dot cellular automata (QCA) can realize transistorless computation to overcome the limitations of ultrascaled complementary metal–oxide–semiconductor (CMOS) technology. Reversible logic computing results in energy-efficient logic operations because of the bijective relation between inputs and outputs, leading to no loss of bit information. A highly area-efficient, robust, and reversible QCA-based Hamming code generator, error detector, and message corrector circuit is reported herein for the first time. Hamming codes are linear error-correcting codes that can detect up to two-bit errors and correct one-bit errors but without detection of uncorrected errors. To implement the circuit, Feynman reversible logic is employed along with coplanar crossovers having 180° clock zones. The proposed circuit is single layer, ensuring easier realization. Here, complexity analysis in terms of the cell count, area coverage, latency, quantum cost, number of garbage outputs, QCA circuit cost, hazard analysis, etc. is also carried out for all the proposed circuits. The designed circuits have a smaller cell count, with area coverage of approximately 29.5% and latency on the order of 0.5–2.75 clock periods. Moreover, these QCA based circuits provide strong evidence that reversible logic-based QCA circuits can be efficiently deployed for these error detecting and correcting codes.</description><identifier>ISSN: 1569-8025</identifier><identifier>EISSN: 1572-8137</identifier><identifier>DOI: 10.1007/s10825-021-01802-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Cellular automata ; Circuit design ; Circuits ; CMOS ; Codes ; Cost analysis ; Design ; Electrical Engineering ; Energy efficiency ; Engineering ; Error correcting codes ; Error correction ; Error correction & detection ; Error detection ; Garbage ; Hamming codes ; Hazard assessment ; Logic ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mechanical Engineering ; Optical and Electronic Materials ; Quantum dots ; Robustness ; Sensors ; Theoretical</subject><ispartof>Journal of computational electronics, 2021-12, Vol.20 (6), p.2622-2647</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-5b75ea5695b239e029668e6a8bd7ff77f876a91440238ea577f9f1f2feaba2703</citedby><cites>FETCH-LOGICAL-c319t-5b75ea5695b239e029668e6a8bd7ff77f876a91440238ea577f9f1f2feaba2703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10825-021-01802-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918277151?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21368,27903,27904,33723,41467,42536,43784,51298,64362,64366,72216</link.rule.ids></links><search><creatorcontrib>Kaity, Aishwarya</creatorcontrib><creatorcontrib>Singh, Sangeeta</creatorcontrib><title>An area-efficient, robust, and reversible QCA-based Hamming code generator, error detector, and corrector: design and performance estimation</title><title>Journal of computational electronics</title><addtitle>J Comput Electron</addtitle><description>The inherent quasiadiabatic switching enabled by quantum-dot cellular automata (QCA) can realize transistorless computation to overcome the limitations of ultrascaled complementary metal–oxide–semiconductor (CMOS) technology. Reversible logic computing results in energy-efficient logic operations because of the bijective relation between inputs and outputs, leading to no loss of bit information. A highly area-efficient, robust, and reversible QCA-based Hamming code generator, error detector, and message corrector circuit is reported herein for the first time. Hamming codes are linear error-correcting codes that can detect up to two-bit errors and correct one-bit errors but without detection of uncorrected errors. To implement the circuit, Feynman reversible logic is employed along with coplanar crossovers having 180° clock zones. The proposed circuit is single layer, ensuring easier realization. Here, complexity analysis in terms of the cell count, area coverage, latency, quantum cost, number of garbage outputs, QCA circuit cost, hazard analysis, etc. is also carried out for all the proposed circuits. The designed circuits have a smaller cell count, with area coverage of approximately 29.5% and latency on the order of 0.5–2.75 clock periods. Moreover, these QCA based circuits provide strong evidence that reversible logic-based QCA circuits can be efficiently deployed for these error detecting and correcting codes.</description><subject>Cellular automata</subject><subject>Circuit design</subject><subject>Circuits</subject><subject>CMOS</subject><subject>Codes</subject><subject>Cost analysis</subject><subject>Design</subject><subject>Electrical Engineering</subject><subject>Energy efficiency</subject><subject>Engineering</subject><subject>Error correcting codes</subject><subject>Error correction</subject><subject>Error correction & detection</subject><subject>Error detection</subject><subject>Garbage</subject><subject>Hamming codes</subject><subject>Hazard assessment</subject><subject>Logic</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mechanical Engineering</subject><subject>Optical and Electronic Materials</subject><subject>Quantum dots</subject><subject>Robustness</subject><subject>Sensors</subject><subject>Theoretical</subject><issn>1569-8025</issn><issn>1572-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UE1LAzEQDaJgrf4BTwGvjSbZ7ibrrRS1QkEEPYfs7mTZ0k3qZCv4H_zRplvBm6f5eu_NzCPkWvBbwbm6i4JrmTMuBeNCc8n0CZmIXKVEZOr0kBclS4P8nFzEuOFccjkXE_K98NQiWAbOdXUHfphRDNU-pmh9QxE-AWNXbYG-LhesshEaurJ93_mW1qEB2oIHtEPAGQXEgLSBAeqxPgjUAXEs79Mgdq0fuztAF7C3vgYKceh6O3TBX5IzZ7cRrn7jlLw_PrwtV2z98vS8XKxZnYlyYHmlcrDpobySWQlclkWhobC6apRzSjmtCluK-ZzLTCdg6pROOOnAVlYqnk3JzVF3h-Fjn_abTdijTyuNLIWWSolcJJQ8omoMMSI4s8N0KH4Zwc3BdXN03STXzei60YmUHUkxgX0L-Cf9D-sH6ViGRQ</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Kaity, Aishwarya</creator><creator>Singh, Sangeeta</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20211201</creationdate><title>An area-efficient, robust, and reversible QCA-based Hamming code generator, error detector, and corrector: design and performance estimation</title><author>Kaity, Aishwarya ; Singh, Sangeeta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-5b75ea5695b239e029668e6a8bd7ff77f876a91440238ea577f9f1f2feaba2703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cellular automata</topic><topic>Circuit design</topic><topic>Circuits</topic><topic>CMOS</topic><topic>Codes</topic><topic>Cost analysis</topic><topic>Design</topic><topic>Electrical Engineering</topic><topic>Energy efficiency</topic><topic>Engineering</topic><topic>Error correcting codes</topic><topic>Error correction</topic><topic>Error correction & detection</topic><topic>Error detection</topic><topic>Garbage</topic><topic>Hamming codes</topic><topic>Hazard assessment</topic><topic>Logic</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mechanical Engineering</topic><topic>Optical and Electronic Materials</topic><topic>Quantum dots</topic><topic>Robustness</topic><topic>Sensors</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaity, Aishwarya</creatorcontrib><creatorcontrib>Singh, Sangeeta</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Journal of computational electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaity, Aishwarya</au><au>Singh, Sangeeta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An area-efficient, robust, and reversible QCA-based Hamming code generator, error detector, and corrector: design and performance estimation</atitle><jtitle>Journal of computational electronics</jtitle><stitle>J Comput Electron</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>20</volume><issue>6</issue><spage>2622</spage><epage>2647</epage><pages>2622-2647</pages><issn>1569-8025</issn><eissn>1572-8137</eissn><abstract>The inherent quasiadiabatic switching enabled by quantum-dot cellular automata (QCA) can realize transistorless computation to overcome the limitations of ultrascaled complementary metal–oxide–semiconductor (CMOS) technology. Reversible logic computing results in energy-efficient logic operations because of the bijective relation between inputs and outputs, leading to no loss of bit information. A highly area-efficient, robust, and reversible QCA-based Hamming code generator, error detector, and message corrector circuit is reported herein for the first time. Hamming codes are linear error-correcting codes that can detect up to two-bit errors and correct one-bit errors but without detection of uncorrected errors. To implement the circuit, Feynman reversible logic is employed along with coplanar crossovers having 180° clock zones. The proposed circuit is single layer, ensuring easier realization. Here, complexity analysis in terms of the cell count, area coverage, latency, quantum cost, number of garbage outputs, QCA circuit cost, hazard analysis, etc. is also carried out for all the proposed circuits. The designed circuits have a smaller cell count, with area coverage of approximately 29.5% and latency on the order of 0.5–2.75 clock periods. Moreover, these QCA based circuits provide strong evidence that reversible logic-based QCA circuits can be efficiently deployed for these error detecting and correcting codes.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10825-021-01802-8</doi><tpages>26</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1569-8025 |
ispartof | Journal of computational electronics, 2021-12, Vol.20 (6), p.2622-2647 |
issn | 1569-8025 1572-8137 |
language | eng |
recordid | cdi_proquest_journals_2918277151 |
source | Springer Nature - Complete Springer Journals; ProQuest Central UK/Ireland; ProQuest Central |
subjects | Cellular automata Circuit design Circuits CMOS Codes Cost analysis Design Electrical Engineering Energy efficiency Engineering Error correcting codes Error correction Error correction & detection Error detection Garbage Hamming codes Hazard assessment Logic Mathematical and Computational Engineering Mathematical and Computational Physics Mechanical Engineering Optical and Electronic Materials Quantum dots Robustness Sensors Theoretical |
title | An area-efficient, robust, and reversible QCA-based Hamming code generator, error detector, and corrector: design and performance estimation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T12%3A12%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20area-efficient,%20robust,%20and%20reversible%20QCA-based%20Hamming%20code%20generator,%20error%20detector,%20and%20corrector:%20design%20and%20performance%20estimation&rft.jtitle=Journal%20of%20computational%20electronics&rft.au=Kaity,%20Aishwarya&rft.date=2021-12-01&rft.volume=20&rft.issue=6&rft.spage=2622&rft.epage=2647&rft.pages=2622-2647&rft.issn=1569-8025&rft.eissn=1572-8137&rft_id=info:doi/10.1007/s10825-021-01802-8&rft_dat=%3Cproquest_cross%3E2918277151%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918277151&rft_id=info:pmid/&rfr_iscdi=true |