Tuning the optical properties through bandgap engineering in Si-doped YAuPb: ab initio study
In order to probe the bandgap engineering to tune optical properties in YAuPb 1−x Si x ( x = 0, 0.25, 0.50, 0.75 and 1) alloys, we used all-electron full-potential linearized augmented plane wave (FP-LAPW+lo) method within the framework of the density functional theory. The optimized structural par...
Gespeichert in:
Veröffentlicht in: | Journal of computational electronics 2022-02, Vol.21 (1), p.119-127 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 127 |
---|---|
container_issue | 1 |
container_start_page | 119 |
container_title | Journal of computational electronics |
container_volume | 21 |
creator | Rehman, Fida Dahshan, A. Yakout, H. A. Shariq, Mohammad Ahmad, Pervaiz Saeed, Y. |
description | In order to probe the bandgap engineering to tune optical properties in YAuPb
1−x
Si
x
(
x
= 0, 0.25, 0.50, 0.75 and 1) alloys, we used all-electron full-potential linearized augmented plane wave (FP-LAPW+lo) method within the framework of the density functional theory. The optimized structural parameters were in good agreement with other theoretical and experimental results. The calculated results of elastic constant satisfy the condition for mechanical stability at each composition for cubic symmetry. In addition, the study of elastic parameters is summarized for the calculation bulk modulus, Young’s modulus, shear modulus, Kleinman parameters, Poisson’s ratio and Lame’s co-efficient. To predict the brittle (ductile) nature of this composition, the Cauchy pressure, Poisson’s ratio, and
B
/
G
ratio were also calculated. Using modified Becke and Johnson GGA, the bandgap values of each composition were computed precisely. Further, it was observed that for 0.25 |
doi_str_mv | 10.1007/s10825-021-01845-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918277057</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918277057</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-f1ab445a49784e6d34aafc4a3067239b3be3dfd66da7939d1e8e2b1aa1909c0d3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Bz9F8tWm8LYtfsKDgehCEkDZpN8va1iSF3X9vagVvnmYY3vedmQeAS4KvCcbiJhBc0AxhShAmBc_Q_gjMSCYoKggTx2OfS1Rgmp2CsxC2GFNMOZmBj_XQuraBcWNh10dX6R3sfddbH50Naey7odnAUrem0T20beNaa_1ocS18dcgkrYHvi-GlvIW6TFMXXQdDHMzhHJzUehfsxW-dg7f7u_XyEa2eH56WixWqGJER1USXnGeaS1FwmxvGta4rrhnOBWWyZKVlpjZ5brSQTBpiC0tLojWRWFbYsDm4mnLT5V-DDVFtu8G3aaWikhRUCJyJpKKTqvJdCN7WqvfuU_uDIliNFNVEUSWK6oei2icTm0yhH5-2_i_6H9c3B112Xg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918277057</pqid></control><display><type>article</type><title>Tuning the optical properties through bandgap engineering in Si-doped YAuPb: ab initio study</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central</source><creator>Rehman, Fida ; Dahshan, A. ; Yakout, H. A. ; Shariq, Mohammad ; Ahmad, Pervaiz ; Saeed, Y.</creator><creatorcontrib>Rehman, Fida ; Dahshan, A. ; Yakout, H. A. ; Shariq, Mohammad ; Ahmad, Pervaiz ; Saeed, Y.</creatorcontrib><description>In order to probe the bandgap engineering to tune optical properties in YAuPb
1−x
Si
x
(
x
= 0, 0.25, 0.50, 0.75 and 1) alloys, we used all-electron full-potential linearized augmented plane wave (FP-LAPW+lo) method within the framework of the density functional theory. The optimized structural parameters were in good agreement with other theoretical and experimental results. The calculated results of elastic constant satisfy the condition for mechanical stability at each composition for cubic symmetry. In addition, the study of elastic parameters is summarized for the calculation bulk modulus, Young’s modulus, shear modulus, Kleinman parameters, Poisson’s ratio and Lame’s co-efficient. To predict the brittle (ductile) nature of this composition, the Cauchy pressure, Poisson’s ratio, and
B
/
G
ratio were also calculated. Using modified Becke and Johnson GGA, the bandgap values of each composition were computed precisely. Further, it was observed that for 0.25 <
x
< 0.75, the bandgap structure revealed a direct bandgap configuration. In order to analyze the electronic structure of each composition, the total and partial densities of states have been investigated in detail. Furthermore, the investigation of optical parameters in terms of dielectric functions revealed the potential of these alloys for optoelectronic devices.</description><identifier>ISSN: 1569-8025</identifier><identifier>EISSN: 1572-8137</identifier><identifier>DOI: 10.1007/s10825-021-01845-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alloys ; Anisotropy ; Approximation ; Bulk modulus ; Composition ; Density functional theory ; Ductile-brittle transition ; Elastic properties ; Electrical Engineering ; Electronic structure ; Energy ; Energy gap ; Engineering ; Mathematical analysis ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mechanical Engineering ; Mechanical properties ; Modulus of elasticity ; Optical and Electronic Materials ; Optical properties ; Optimization ; Optoelectronic devices ; Parameters ; Plane waves ; Shear modulus ; Shear strain ; Symmetry ; Theoretical</subject><ispartof>Journal of computational electronics, 2022-02, Vol.21 (1), p.119-127</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-f1ab445a49784e6d34aafc4a3067239b3be3dfd66da7939d1e8e2b1aa1909c0d3</citedby><cites>FETCH-LOGICAL-c319t-f1ab445a49784e6d34aafc4a3067239b3be3dfd66da7939d1e8e2b1aa1909c0d3</cites><orcidid>0000-0003-3080-7385</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10825-021-01845-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918277057?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21368,27903,27904,33723,41467,42536,43784,51297</link.rule.ids></links><search><creatorcontrib>Rehman, Fida</creatorcontrib><creatorcontrib>Dahshan, A.</creatorcontrib><creatorcontrib>Yakout, H. A.</creatorcontrib><creatorcontrib>Shariq, Mohammad</creatorcontrib><creatorcontrib>Ahmad, Pervaiz</creatorcontrib><creatorcontrib>Saeed, Y.</creatorcontrib><title>Tuning the optical properties through bandgap engineering in Si-doped YAuPb: ab initio study</title><title>Journal of computational electronics</title><addtitle>J Comput Electron</addtitle><description>In order to probe the bandgap engineering to tune optical properties in YAuPb
1−x
Si
x
(
x
= 0, 0.25, 0.50, 0.75 and 1) alloys, we used all-electron full-potential linearized augmented plane wave (FP-LAPW+lo) method within the framework of the density functional theory. The optimized structural parameters were in good agreement with other theoretical and experimental results. The calculated results of elastic constant satisfy the condition for mechanical stability at each composition for cubic symmetry. In addition, the study of elastic parameters is summarized for the calculation bulk modulus, Young’s modulus, shear modulus, Kleinman parameters, Poisson’s ratio and Lame’s co-efficient. To predict the brittle (ductile) nature of this composition, the Cauchy pressure, Poisson’s ratio, and
B
/
G
ratio were also calculated. Using modified Becke and Johnson GGA, the bandgap values of each composition were computed precisely. Further, it was observed that for 0.25 <
x
< 0.75, the bandgap structure revealed a direct bandgap configuration. In order to analyze the electronic structure of each composition, the total and partial densities of states have been investigated in detail. Furthermore, the investigation of optical parameters in terms of dielectric functions revealed the potential of these alloys for optoelectronic devices.</description><subject>Alloys</subject><subject>Anisotropy</subject><subject>Approximation</subject><subject>Bulk modulus</subject><subject>Composition</subject><subject>Density functional theory</subject><subject>Ductile-brittle transition</subject><subject>Elastic properties</subject><subject>Electrical Engineering</subject><subject>Electronic structure</subject><subject>Energy</subject><subject>Energy gap</subject><subject>Engineering</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mechanical Engineering</subject><subject>Mechanical properties</subject><subject>Modulus of elasticity</subject><subject>Optical and Electronic Materials</subject><subject>Optical properties</subject><subject>Optimization</subject><subject>Optoelectronic devices</subject><subject>Parameters</subject><subject>Plane waves</subject><subject>Shear modulus</subject><subject>Shear strain</subject><subject>Symmetry</subject><subject>Theoretical</subject><issn>1569-8025</issn><issn>1572-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1LxDAQhoMouK7-AU8Bz9F8tWm8LYtfsKDgehCEkDZpN8va1iSF3X9vagVvnmYY3vedmQeAS4KvCcbiJhBc0AxhShAmBc_Q_gjMSCYoKggTx2OfS1Rgmp2CsxC2GFNMOZmBj_XQuraBcWNh10dX6R3sfddbH50Naey7odnAUrem0T20beNaa_1ocS18dcgkrYHvi-GlvIW6TFMXXQdDHMzhHJzUehfsxW-dg7f7u_XyEa2eH56WixWqGJER1USXnGeaS1FwmxvGta4rrhnOBWWyZKVlpjZ5brSQTBpiC0tLojWRWFbYsDm4mnLT5V-DDVFtu8G3aaWikhRUCJyJpKKTqvJdCN7WqvfuU_uDIliNFNVEUSWK6oei2icTm0yhH5-2_i_6H9c3B112Xg</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Rehman, Fida</creator><creator>Dahshan, A.</creator><creator>Yakout, H. A.</creator><creator>Shariq, Mohammad</creator><creator>Ahmad, Pervaiz</creator><creator>Saeed, Y.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-3080-7385</orcidid></search><sort><creationdate>20220201</creationdate><title>Tuning the optical properties through bandgap engineering in Si-doped YAuPb: ab initio study</title><author>Rehman, Fida ; Dahshan, A. ; Yakout, H. A. ; Shariq, Mohammad ; Ahmad, Pervaiz ; Saeed, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-f1ab445a49784e6d34aafc4a3067239b3be3dfd66da7939d1e8e2b1aa1909c0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alloys</topic><topic>Anisotropy</topic><topic>Approximation</topic><topic>Bulk modulus</topic><topic>Composition</topic><topic>Density functional theory</topic><topic>Ductile-brittle transition</topic><topic>Elastic properties</topic><topic>Electrical Engineering</topic><topic>Electronic structure</topic><topic>Energy</topic><topic>Energy gap</topic><topic>Engineering</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mechanical Engineering</topic><topic>Mechanical properties</topic><topic>Modulus of elasticity</topic><topic>Optical and Electronic Materials</topic><topic>Optical properties</topic><topic>Optimization</topic><topic>Optoelectronic devices</topic><topic>Parameters</topic><topic>Plane waves</topic><topic>Shear modulus</topic><topic>Shear strain</topic><topic>Symmetry</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rehman, Fida</creatorcontrib><creatorcontrib>Dahshan, A.</creatorcontrib><creatorcontrib>Yakout, H. A.</creatorcontrib><creatorcontrib>Shariq, Mohammad</creatorcontrib><creatorcontrib>Ahmad, Pervaiz</creatorcontrib><creatorcontrib>Saeed, Y.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Journal of computational electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rehman, Fida</au><au>Dahshan, A.</au><au>Yakout, H. A.</au><au>Shariq, Mohammad</au><au>Ahmad, Pervaiz</au><au>Saeed, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tuning the optical properties through bandgap engineering in Si-doped YAuPb: ab initio study</atitle><jtitle>Journal of computational electronics</jtitle><stitle>J Comput Electron</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>21</volume><issue>1</issue><spage>119</spage><epage>127</epage><pages>119-127</pages><issn>1569-8025</issn><eissn>1572-8137</eissn><abstract>In order to probe the bandgap engineering to tune optical properties in YAuPb
1−x
Si
x
(
x
= 0, 0.25, 0.50, 0.75 and 1) alloys, we used all-electron full-potential linearized augmented plane wave (FP-LAPW+lo) method within the framework of the density functional theory. The optimized structural parameters were in good agreement with other theoretical and experimental results. The calculated results of elastic constant satisfy the condition for mechanical stability at each composition for cubic symmetry. In addition, the study of elastic parameters is summarized for the calculation bulk modulus, Young’s modulus, shear modulus, Kleinman parameters, Poisson’s ratio and Lame’s co-efficient. To predict the brittle (ductile) nature of this composition, the Cauchy pressure, Poisson’s ratio, and
B
/
G
ratio were also calculated. Using modified Becke and Johnson GGA, the bandgap values of each composition were computed precisely. Further, it was observed that for 0.25 <
x
< 0.75, the bandgap structure revealed a direct bandgap configuration. In order to analyze the electronic structure of each composition, the total and partial densities of states have been investigated in detail. Furthermore, the investigation of optical parameters in terms of dielectric functions revealed the potential of these alloys for optoelectronic devices.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10825-021-01845-x</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3080-7385</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1569-8025 |
ispartof | Journal of computational electronics, 2022-02, Vol.21 (1), p.119-127 |
issn | 1569-8025 1572-8137 |
language | eng |
recordid | cdi_proquest_journals_2918277057 |
source | Springer Nature - Complete Springer Journals; ProQuest Central |
subjects | Alloys Anisotropy Approximation Bulk modulus Composition Density functional theory Ductile-brittle transition Elastic properties Electrical Engineering Electronic structure Energy Energy gap Engineering Mathematical analysis Mathematical and Computational Engineering Mathematical and Computational Physics Mechanical Engineering Mechanical properties Modulus of elasticity Optical and Electronic Materials Optical properties Optimization Optoelectronic devices Parameters Plane waves Shear modulus Shear strain Symmetry Theoretical |
title | Tuning the optical properties through bandgap engineering in Si-doped YAuPb: ab initio study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T06%3A14%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tuning%20the%20optical%20properties%20through%20bandgap%20engineering%20in%20Si-doped%20YAuPb:%20ab%20initio%20study&rft.jtitle=Journal%20of%20computational%20electronics&rft.au=Rehman,%20Fida&rft.date=2022-02-01&rft.volume=21&rft.issue=1&rft.spage=119&rft.epage=127&rft.pages=119-127&rft.issn=1569-8025&rft.eissn=1572-8137&rft_id=info:doi/10.1007/s10825-021-01845-x&rft_dat=%3Cproquest_cross%3E2918277057%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918277057&rft_id=info:pmid/&rfr_iscdi=true |