Tuning the optical properties through bandgap engineering in Si-doped YAuPb: ab initio study

In order to probe the bandgap engineering to tune optical properties in YAuPb 1−x Si x ( x  = 0, 0.25, 0.50, 0.75 and 1) alloys, we used all-electron full-potential linearized augmented plane wave (FP-LAPW+lo) method within the framework of the density functional theory. The optimized structural par...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational electronics 2022-02, Vol.21 (1), p.119-127
Hauptverfasser: Rehman, Fida, Dahshan, A., Yakout, H. A., Shariq, Mohammad, Ahmad, Pervaiz, Saeed, Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 127
container_issue 1
container_start_page 119
container_title Journal of computational electronics
container_volume 21
creator Rehman, Fida
Dahshan, A.
Yakout, H. A.
Shariq, Mohammad
Ahmad, Pervaiz
Saeed, Y.
description In order to probe the bandgap engineering to tune optical properties in YAuPb 1−x Si x ( x  = 0, 0.25, 0.50, 0.75 and 1) alloys, we used all-electron full-potential linearized augmented plane wave (FP-LAPW+lo) method within the framework of the density functional theory. The optimized structural parameters were in good agreement with other theoretical and experimental results. The calculated results of elastic constant satisfy the condition for mechanical stability at each composition for cubic symmetry. In addition, the study of elastic parameters is summarized for the calculation bulk modulus, Young’s modulus, shear modulus, Kleinman parameters, Poisson’s ratio and Lame’s co-efficient. To predict the brittle (ductile) nature of this composition, the Cauchy pressure, Poisson’s ratio, and B / G ratio were also calculated. Using modified Becke and Johnson GGA, the bandgap values of each composition were computed precisely. Further, it was observed that for 0.25 
doi_str_mv 10.1007/s10825-021-01845-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918277057</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918277057</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-f1ab445a49784e6d34aafc4a3067239b3be3dfd66da7939d1e8e2b1aa1909c0d3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Bz9F8tWm8LYtfsKDgehCEkDZpN8va1iSF3X9vagVvnmYY3vedmQeAS4KvCcbiJhBc0AxhShAmBc_Q_gjMSCYoKggTx2OfS1Rgmp2CsxC2GFNMOZmBj_XQuraBcWNh10dX6R3sfddbH50Naey7odnAUrem0T20beNaa_1ocS18dcgkrYHvi-GlvIW6TFMXXQdDHMzhHJzUehfsxW-dg7f7u_XyEa2eH56WixWqGJER1USXnGeaS1FwmxvGta4rrhnOBWWyZKVlpjZ5brSQTBpiC0tLojWRWFbYsDm4mnLT5V-DDVFtu8G3aaWikhRUCJyJpKKTqvJdCN7WqvfuU_uDIliNFNVEUSWK6oei2icTm0yhH5-2_i_6H9c3B112Xg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918277057</pqid></control><display><type>article</type><title>Tuning the optical properties through bandgap engineering in Si-doped YAuPb: ab initio study</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central</source><creator>Rehman, Fida ; Dahshan, A. ; Yakout, H. A. ; Shariq, Mohammad ; Ahmad, Pervaiz ; Saeed, Y.</creator><creatorcontrib>Rehman, Fida ; Dahshan, A. ; Yakout, H. A. ; Shariq, Mohammad ; Ahmad, Pervaiz ; Saeed, Y.</creatorcontrib><description>In order to probe the bandgap engineering to tune optical properties in YAuPb 1−x Si x ( x  = 0, 0.25, 0.50, 0.75 and 1) alloys, we used all-electron full-potential linearized augmented plane wave (FP-LAPW+lo) method within the framework of the density functional theory. The optimized structural parameters were in good agreement with other theoretical and experimental results. The calculated results of elastic constant satisfy the condition for mechanical stability at each composition for cubic symmetry. In addition, the study of elastic parameters is summarized for the calculation bulk modulus, Young’s modulus, shear modulus, Kleinman parameters, Poisson’s ratio and Lame’s co-efficient. To predict the brittle (ductile) nature of this composition, the Cauchy pressure, Poisson’s ratio, and B / G ratio were also calculated. Using modified Becke and Johnson GGA, the bandgap values of each composition were computed precisely. Further, it was observed that for 0.25 &lt;  x  &lt; 0.75, the bandgap structure revealed a direct bandgap configuration. In order to analyze the electronic structure of each composition, the total and partial densities of states have been investigated in detail. Furthermore, the investigation of optical parameters in terms of dielectric functions revealed the potential of these alloys for optoelectronic devices.</description><identifier>ISSN: 1569-8025</identifier><identifier>EISSN: 1572-8137</identifier><identifier>DOI: 10.1007/s10825-021-01845-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alloys ; Anisotropy ; Approximation ; Bulk modulus ; Composition ; Density functional theory ; Ductile-brittle transition ; Elastic properties ; Electrical Engineering ; Electronic structure ; Energy ; Energy gap ; Engineering ; Mathematical analysis ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mechanical Engineering ; Mechanical properties ; Modulus of elasticity ; Optical and Electronic Materials ; Optical properties ; Optimization ; Optoelectronic devices ; Parameters ; Plane waves ; Shear modulus ; Shear strain ; Symmetry ; Theoretical</subject><ispartof>Journal of computational electronics, 2022-02, Vol.21 (1), p.119-127</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-f1ab445a49784e6d34aafc4a3067239b3be3dfd66da7939d1e8e2b1aa1909c0d3</citedby><cites>FETCH-LOGICAL-c319t-f1ab445a49784e6d34aafc4a3067239b3be3dfd66da7939d1e8e2b1aa1909c0d3</cites><orcidid>0000-0003-3080-7385</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10825-021-01845-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918277057?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21368,27903,27904,33723,41467,42536,43784,51297</link.rule.ids></links><search><creatorcontrib>Rehman, Fida</creatorcontrib><creatorcontrib>Dahshan, A.</creatorcontrib><creatorcontrib>Yakout, H. A.</creatorcontrib><creatorcontrib>Shariq, Mohammad</creatorcontrib><creatorcontrib>Ahmad, Pervaiz</creatorcontrib><creatorcontrib>Saeed, Y.</creatorcontrib><title>Tuning the optical properties through bandgap engineering in Si-doped YAuPb: ab initio study</title><title>Journal of computational electronics</title><addtitle>J Comput Electron</addtitle><description>In order to probe the bandgap engineering to tune optical properties in YAuPb 1−x Si x ( x  = 0, 0.25, 0.50, 0.75 and 1) alloys, we used all-electron full-potential linearized augmented plane wave (FP-LAPW+lo) method within the framework of the density functional theory. The optimized structural parameters were in good agreement with other theoretical and experimental results. The calculated results of elastic constant satisfy the condition for mechanical stability at each composition for cubic symmetry. In addition, the study of elastic parameters is summarized for the calculation bulk modulus, Young’s modulus, shear modulus, Kleinman parameters, Poisson’s ratio and Lame’s co-efficient. To predict the brittle (ductile) nature of this composition, the Cauchy pressure, Poisson’s ratio, and B / G ratio were also calculated. Using modified Becke and Johnson GGA, the bandgap values of each composition were computed precisely. Further, it was observed that for 0.25 &lt;  x  &lt; 0.75, the bandgap structure revealed a direct bandgap configuration. In order to analyze the electronic structure of each composition, the total and partial densities of states have been investigated in detail. Furthermore, the investigation of optical parameters in terms of dielectric functions revealed the potential of these alloys for optoelectronic devices.</description><subject>Alloys</subject><subject>Anisotropy</subject><subject>Approximation</subject><subject>Bulk modulus</subject><subject>Composition</subject><subject>Density functional theory</subject><subject>Ductile-brittle transition</subject><subject>Elastic properties</subject><subject>Electrical Engineering</subject><subject>Electronic structure</subject><subject>Energy</subject><subject>Energy gap</subject><subject>Engineering</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mechanical Engineering</subject><subject>Mechanical properties</subject><subject>Modulus of elasticity</subject><subject>Optical and Electronic Materials</subject><subject>Optical properties</subject><subject>Optimization</subject><subject>Optoelectronic devices</subject><subject>Parameters</subject><subject>Plane waves</subject><subject>Shear modulus</subject><subject>Shear strain</subject><subject>Symmetry</subject><subject>Theoretical</subject><issn>1569-8025</issn><issn>1572-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1LxDAQhoMouK7-AU8Bz9F8tWm8LYtfsKDgehCEkDZpN8va1iSF3X9vagVvnmYY3vedmQeAS4KvCcbiJhBc0AxhShAmBc_Q_gjMSCYoKggTx2OfS1Rgmp2CsxC2GFNMOZmBj_XQuraBcWNh10dX6R3sfddbH50Naey7odnAUrem0T20beNaa_1ocS18dcgkrYHvi-GlvIW6TFMXXQdDHMzhHJzUehfsxW-dg7f7u_XyEa2eH56WixWqGJER1USXnGeaS1FwmxvGta4rrhnOBWWyZKVlpjZ5brSQTBpiC0tLojWRWFbYsDm4mnLT5V-DDVFtu8G3aaWikhRUCJyJpKKTqvJdCN7WqvfuU_uDIliNFNVEUSWK6oei2icTm0yhH5-2_i_6H9c3B112Xg</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Rehman, Fida</creator><creator>Dahshan, A.</creator><creator>Yakout, H. A.</creator><creator>Shariq, Mohammad</creator><creator>Ahmad, Pervaiz</creator><creator>Saeed, Y.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-3080-7385</orcidid></search><sort><creationdate>20220201</creationdate><title>Tuning the optical properties through bandgap engineering in Si-doped YAuPb: ab initio study</title><author>Rehman, Fida ; Dahshan, A. ; Yakout, H. A. ; Shariq, Mohammad ; Ahmad, Pervaiz ; Saeed, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-f1ab445a49784e6d34aafc4a3067239b3be3dfd66da7939d1e8e2b1aa1909c0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alloys</topic><topic>Anisotropy</topic><topic>Approximation</topic><topic>Bulk modulus</topic><topic>Composition</topic><topic>Density functional theory</topic><topic>Ductile-brittle transition</topic><topic>Elastic properties</topic><topic>Electrical Engineering</topic><topic>Electronic structure</topic><topic>Energy</topic><topic>Energy gap</topic><topic>Engineering</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mechanical Engineering</topic><topic>Mechanical properties</topic><topic>Modulus of elasticity</topic><topic>Optical and Electronic Materials</topic><topic>Optical properties</topic><topic>Optimization</topic><topic>Optoelectronic devices</topic><topic>Parameters</topic><topic>Plane waves</topic><topic>Shear modulus</topic><topic>Shear strain</topic><topic>Symmetry</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rehman, Fida</creatorcontrib><creatorcontrib>Dahshan, A.</creatorcontrib><creatorcontrib>Yakout, H. A.</creatorcontrib><creatorcontrib>Shariq, Mohammad</creatorcontrib><creatorcontrib>Ahmad, Pervaiz</creatorcontrib><creatorcontrib>Saeed, Y.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Journal of computational electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rehman, Fida</au><au>Dahshan, A.</au><au>Yakout, H. A.</au><au>Shariq, Mohammad</au><au>Ahmad, Pervaiz</au><au>Saeed, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tuning the optical properties through bandgap engineering in Si-doped YAuPb: ab initio study</atitle><jtitle>Journal of computational electronics</jtitle><stitle>J Comput Electron</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>21</volume><issue>1</issue><spage>119</spage><epage>127</epage><pages>119-127</pages><issn>1569-8025</issn><eissn>1572-8137</eissn><abstract>In order to probe the bandgap engineering to tune optical properties in YAuPb 1−x Si x ( x  = 0, 0.25, 0.50, 0.75 and 1) alloys, we used all-electron full-potential linearized augmented plane wave (FP-LAPW+lo) method within the framework of the density functional theory. The optimized structural parameters were in good agreement with other theoretical and experimental results. The calculated results of elastic constant satisfy the condition for mechanical stability at each composition for cubic symmetry. In addition, the study of elastic parameters is summarized for the calculation bulk modulus, Young’s modulus, shear modulus, Kleinman parameters, Poisson’s ratio and Lame’s co-efficient. To predict the brittle (ductile) nature of this composition, the Cauchy pressure, Poisson’s ratio, and B / G ratio were also calculated. Using modified Becke and Johnson GGA, the bandgap values of each composition were computed precisely. Further, it was observed that for 0.25 &lt;  x  &lt; 0.75, the bandgap structure revealed a direct bandgap configuration. In order to analyze the electronic structure of each composition, the total and partial densities of states have been investigated in detail. Furthermore, the investigation of optical parameters in terms of dielectric functions revealed the potential of these alloys for optoelectronic devices.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10825-021-01845-x</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3080-7385</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1569-8025
ispartof Journal of computational electronics, 2022-02, Vol.21 (1), p.119-127
issn 1569-8025
1572-8137
language eng
recordid cdi_proquest_journals_2918277057
source Springer Nature - Complete Springer Journals; ProQuest Central
subjects Alloys
Anisotropy
Approximation
Bulk modulus
Composition
Density functional theory
Ductile-brittle transition
Elastic properties
Electrical Engineering
Electronic structure
Energy
Energy gap
Engineering
Mathematical analysis
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mechanical Engineering
Mechanical properties
Modulus of elasticity
Optical and Electronic Materials
Optical properties
Optimization
Optoelectronic devices
Parameters
Plane waves
Shear modulus
Shear strain
Symmetry
Theoretical
title Tuning the optical properties through bandgap engineering in Si-doped YAuPb: ab initio study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T06%3A14%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tuning%20the%20optical%20properties%20through%20bandgap%20engineering%20in%20Si-doped%20YAuPb:%20ab%20initio%20study&rft.jtitle=Journal%20of%20computational%20electronics&rft.au=Rehman,%20Fida&rft.date=2022-02-01&rft.volume=21&rft.issue=1&rft.spage=119&rft.epage=127&rft.pages=119-127&rft.issn=1569-8025&rft.eissn=1572-8137&rft_id=info:doi/10.1007/s10825-021-01845-x&rft_dat=%3Cproquest_cross%3E2918277057%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918277057&rft_id=info:pmid/&rfr_iscdi=true