Junctionless FETs based on a silicon-on-insulator architecture with a buried metal fin for multi-threshold operation

In this paper, an n-channel junctionless FinFET (JL FinFET) based on a silicon-on-insulator (SOI) architecture with a buried metal fin (BMF) is presented. We show that the BMF with a suitable work function of the proposed BMF-SOI-JL FinFET device can control the channel electrostatic field by employ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational electronics 2022-12, Vol.21 (6), p.1250-1261
Hauptverfasser: Singh, Dipak Kumar, Nagar, Bal Chand, Akram, M. W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1261
container_issue 6
container_start_page 1250
container_title Journal of computational electronics
container_volume 21
creator Singh, Dipak Kumar
Nagar, Bal Chand
Akram, M. W.
description In this paper, an n-channel junctionless FinFET (JL FinFET) based on a silicon-on-insulator (SOI) architecture with a buried metal fin (BMF) is presented. We show that the BMF with a suitable work function of the proposed BMF-SOI-JL FinFET device can control the channel electrostatic field by employing a Schottky junction effectively. The enhanced association of potential between BMF and the channel combined with gate electric field makes it worthy for multi-threshold and dynamic threshold (DT) operation. Additionally, the biasing of the BMF projects the broad range of threshold voltage ( V TH ) regulation with a high value of body factor ( γ ). The proposed device demonstrates γ enhancement compared to a fin body (FB)-JL FET and conventional SOI-JL FinFETs under identical conditions due to constant potential coupling. The DT mode of operation shows a 73% improvement in ON-state current in addition to reduced subthreshold swing contrast to a BMF-SOI-JL FinFET without DT. This paper imparts a viable option for low-power applications with multi-threshold operation and high switching speed applications with DT operation.
doi_str_mv 10.1007/s10825-022-01948-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918276097</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918276097</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-9d3e69b9499327ffb3f9febe57db2c87362e00ce833651e3c653f372c92616af3</originalsourceid><addsrcrecordid>eNp9kMtKAzEYhQdRsFZfwFXAdTSXzmSylOKVghtdh0z6x0mZZmouiH0an8UnM7WCOyHwZ_Gdc-CrqnNKLikh4ipS0rIaE8YwoXLW4u1BNaG1YLilXBzu_o3ELWH1cXUS44oQRtiMTqr8mL1JbvQDxIhub54j6nSEJRo90l-f0Q3OjB6X53zMg05jQDqY3iUwKQdA7y71SKMuB1dSa0h6QNZ5ZAu4zkNyOPUBYj8OpXMDQe_GTqsjq4cIZ793Wr2U6fk9XjzdPcyvF9gwQhKWSw6N7ORMSs6EtR230kIHtVh2zLSCNwwIMdBy3tQUuGlqbrlgRrKGNtryaXWx792E8S1DTGo15uDLpGKStkw0RIpCsT1lwhhjAKs2wa11-FCUqJ1etderil71o1dtS4jvQ7HA_hXCX_U_qW9zd4Ca</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918276097</pqid></control><display><type>article</type><title>Junctionless FETs based on a silicon-on-insulator architecture with a buried metal fin for multi-threshold operation</title><source>Springer Online Journals Complete</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Singh, Dipak Kumar ; Nagar, Bal Chand ; Akram, M. W.</creator><creatorcontrib>Singh, Dipak Kumar ; Nagar, Bal Chand ; Akram, M. W.</creatorcontrib><description>In this paper, an n-channel junctionless FinFET (JL FinFET) based on a silicon-on-insulator (SOI) architecture with a buried metal fin (BMF) is presented. We show that the BMF with a suitable work function of the proposed BMF-SOI-JL FinFET device can control the channel electrostatic field by employing a Schottky junction effectively. The enhanced association of potential between BMF and the channel combined with gate electric field makes it worthy for multi-threshold and dynamic threshold (DT) operation. Additionally, the biasing of the BMF projects the broad range of threshold voltage ( V TH ) regulation with a high value of body factor ( γ ). The proposed device demonstrates γ enhancement compared to a fin body (FB)-JL FET and conventional SOI-JL FinFETs under identical conditions due to constant potential coupling. The DT mode of operation shows a 73% improvement in ON-state current in addition to reduced subthreshold swing contrast to a BMF-SOI-JL FinFET without DT. This paper imparts a viable option for low-power applications with multi-threshold operation and high switching speed applications with DT operation.</description><identifier>ISSN: 1569-8025</identifier><identifier>EISSN: 1572-8137</identifier><identifier>DOI: 10.1007/s10825-022-01948-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Calibration ; Electric fields ; Electrical Engineering ; Engineering ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mechanical Engineering ; Optical and Electronic Materials ; Silicon ; Simulation ; SOI (semiconductors) ; Theoretical ; Threshold voltage ; Work functions</subject><ispartof>Journal of computational electronics, 2022-12, Vol.21 (6), p.1250-1261</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-9d3e69b9499327ffb3f9febe57db2c87362e00ce833651e3c653f372c92616af3</cites><orcidid>0000-0001-9434-6229</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10825-022-01948-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918276097?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Singh, Dipak Kumar</creatorcontrib><creatorcontrib>Nagar, Bal Chand</creatorcontrib><creatorcontrib>Akram, M. W.</creatorcontrib><title>Junctionless FETs based on a silicon-on-insulator architecture with a buried metal fin for multi-threshold operation</title><title>Journal of computational electronics</title><addtitle>J Comput Electron</addtitle><description>In this paper, an n-channel junctionless FinFET (JL FinFET) based on a silicon-on-insulator (SOI) architecture with a buried metal fin (BMF) is presented. We show that the BMF with a suitable work function of the proposed BMF-SOI-JL FinFET device can control the channel electrostatic field by employing a Schottky junction effectively. The enhanced association of potential between BMF and the channel combined with gate electric field makes it worthy for multi-threshold and dynamic threshold (DT) operation. Additionally, the biasing of the BMF projects the broad range of threshold voltage ( V TH ) regulation with a high value of body factor ( γ ). The proposed device demonstrates γ enhancement compared to a fin body (FB)-JL FET and conventional SOI-JL FinFETs under identical conditions due to constant potential coupling. The DT mode of operation shows a 73% improvement in ON-state current in addition to reduced subthreshold swing contrast to a BMF-SOI-JL FinFET without DT. This paper imparts a viable option for low-power applications with multi-threshold operation and high switching speed applications with DT operation.</description><subject>Calibration</subject><subject>Electric fields</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mechanical Engineering</subject><subject>Optical and Electronic Materials</subject><subject>Silicon</subject><subject>Simulation</subject><subject>SOI (semiconductors)</subject><subject>Theoretical</subject><subject>Threshold voltage</subject><subject>Work functions</subject><issn>1569-8025</issn><issn>1572-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMtKAzEYhQdRsFZfwFXAdTSXzmSylOKVghtdh0z6x0mZZmouiH0an8UnM7WCOyHwZ_Gdc-CrqnNKLikh4ipS0rIaE8YwoXLW4u1BNaG1YLilXBzu_o3ELWH1cXUS44oQRtiMTqr8mL1JbvQDxIhub54j6nSEJRo90l-f0Q3OjB6X53zMg05jQDqY3iUwKQdA7y71SKMuB1dSa0h6QNZ5ZAu4zkNyOPUBYj8OpXMDQe_GTqsjq4cIZ793Wr2U6fk9XjzdPcyvF9gwQhKWSw6N7ORMSs6EtR230kIHtVh2zLSCNwwIMdBy3tQUuGlqbrlgRrKGNtryaXWx792E8S1DTGo15uDLpGKStkw0RIpCsT1lwhhjAKs2wa11-FCUqJ1etderil71o1dtS4jvQ7HA_hXCX_U_qW9zd4Ca</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Singh, Dipak Kumar</creator><creator>Nagar, Bal Chand</creator><creator>Akram, M. W.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-9434-6229</orcidid></search><sort><creationdate>20221201</creationdate><title>Junctionless FETs based on a silicon-on-insulator architecture with a buried metal fin for multi-threshold operation</title><author>Singh, Dipak Kumar ; Nagar, Bal Chand ; Akram, M. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-9d3e69b9499327ffb3f9febe57db2c87362e00ce833651e3c653f372c92616af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Calibration</topic><topic>Electric fields</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mechanical Engineering</topic><topic>Optical and Electronic Materials</topic><topic>Silicon</topic><topic>Simulation</topic><topic>SOI (semiconductors)</topic><topic>Theoretical</topic><topic>Threshold voltage</topic><topic>Work functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singh, Dipak Kumar</creatorcontrib><creatorcontrib>Nagar, Bal Chand</creatorcontrib><creatorcontrib>Akram, M. W.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Journal of computational electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, Dipak Kumar</au><au>Nagar, Bal Chand</au><au>Akram, M. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Junctionless FETs based on a silicon-on-insulator architecture with a buried metal fin for multi-threshold operation</atitle><jtitle>Journal of computational electronics</jtitle><stitle>J Comput Electron</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>21</volume><issue>6</issue><spage>1250</spage><epage>1261</epage><pages>1250-1261</pages><issn>1569-8025</issn><eissn>1572-8137</eissn><abstract>In this paper, an n-channel junctionless FinFET (JL FinFET) based on a silicon-on-insulator (SOI) architecture with a buried metal fin (BMF) is presented. We show that the BMF with a suitable work function of the proposed BMF-SOI-JL FinFET device can control the channel electrostatic field by employing a Schottky junction effectively. The enhanced association of potential between BMF and the channel combined with gate electric field makes it worthy for multi-threshold and dynamic threshold (DT) operation. Additionally, the biasing of the BMF projects the broad range of threshold voltage ( V TH ) regulation with a high value of body factor ( γ ). The proposed device demonstrates γ enhancement compared to a fin body (FB)-JL FET and conventional SOI-JL FinFETs under identical conditions due to constant potential coupling. The DT mode of operation shows a 73% improvement in ON-state current in addition to reduced subthreshold swing contrast to a BMF-SOI-JL FinFET without DT. This paper imparts a viable option for low-power applications with multi-threshold operation and high switching speed applications with DT operation.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10825-022-01948-z</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9434-6229</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1569-8025
ispartof Journal of computational electronics, 2022-12, Vol.21 (6), p.1250-1261
issn 1569-8025
1572-8137
language eng
recordid cdi_proquest_journals_2918276097
source Springer Online Journals Complete; ProQuest Central UK/Ireland; ProQuest Central
subjects Calibration
Electric fields
Electrical Engineering
Engineering
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mechanical Engineering
Optical and Electronic Materials
Silicon
Simulation
SOI (semiconductors)
Theoretical
Threshold voltage
Work functions
title Junctionless FETs based on a silicon-on-insulator architecture with a buried metal fin for multi-threshold operation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A36%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Junctionless%20FETs%20based%20on%20a%C2%A0silicon-on-insulator%20architecture%20with%20a%20buried%20metal%20fin%20for%20multi-threshold%20operation&rft.jtitle=Journal%20of%20computational%20electronics&rft.au=Singh,%20Dipak%20Kumar&rft.date=2022-12-01&rft.volume=21&rft.issue=6&rft.spage=1250&rft.epage=1261&rft.pages=1250-1261&rft.issn=1569-8025&rft.eissn=1572-8137&rft_id=info:doi/10.1007/s10825-022-01948-z&rft_dat=%3Cproquest_cross%3E2918276097%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918276097&rft_id=info:pmid/&rfr_iscdi=true