An analytical model for a TFET with an n-doped channel operating in accumulation and inversion modes

The tunnel field-effect transistor (TFET) is an ambipolar device that conducts current with the channel in both accumulation and inversion modes. Analytical expressions for the channel potential and current in a TFET with an n -doped channel when operating in the accumulation and inversion modes are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational electronics 2021-06, Vol.20 (3), p.1125-1136
Hauptverfasser: Ranjith, R., Suja, K. J., Komaragiri, Rama S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1136
container_issue 3
container_start_page 1125
container_title Journal of computational electronics
container_volume 20
creator Ranjith, R.
Suja, K. J.
Komaragiri, Rama S.
description The tunnel field-effect transistor (TFET) is an ambipolar device that conducts current with the channel in both accumulation and inversion modes. Analytical expressions for the channel potential and current in a TFET with an n -doped channel when operating in the accumulation and inversion modes are proposed herein. The potential model is derived by solving the two-dimensional (2D) Poisson equation using the superposition principle while considering the charges present in the channel due to electron or hole accumulation along with the depletion charges. An expression for the tunneling current corresponding to the maximum tunneling probability is also derived. The tunneling current is obtained by analytically calculating the minimum tunneling length in a TFET when operating in the accumulation or inversion mode. The results of the proposed potential model is compared with technology computer-aided design (TCAD) simulations for TFET with various dimensions, revealing good agreement. The potential and current in an n -type TFET ( n TFET) obtained using the proposed models are also analyzed.
doi_str_mv 10.1007/s10825-021-01683-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918274934</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918274934</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-66bb195f0f7eb3cc3be1ce43571355fb37751afa9778b55891f4975a02986cb43</originalsourceid><addsrcrecordid>eNp9kE9PwyAchonRxDn9Ap5IPKP8oJRyXBb_JUu8zDOhFLYuXTuh1e3bS62JN0_wkud9El6EboHeA6XyIQItmCCUAaGQF5wcz9AMhGSkAC7Px3uuSEGZuERXMe4oZZRlMEPVosWmNc2pr61p8L6rXIN9F7DB66fHNf6q-20CcEuq7uAqbLembROSQjB93W5wnQTWDvuhSbkbbVV6-3QhjmkUxmt04U0T3c3vOUfvyb18Iau359flYkUsB9WTPC9LUMJTL13JreWlA-syLiRwIXzJpRRgvFFSFqUQhQKfKSkMZarIbZnxObqbvIfQfQwu9nrXDSH9LmqmoGAyU3yk2ETZ0MUYnNeHUO9NOGmgelxTT2vqtKb-WVMfU4lPpZjgduPCn_qf1jf9_nfz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918274934</pqid></control><display><type>article</type><title>An analytical model for a TFET with an n-doped channel operating in accumulation and inversion modes</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Ranjith, R. ; Suja, K. J. ; Komaragiri, Rama S.</creator><creatorcontrib>Ranjith, R. ; Suja, K. J. ; Komaragiri, Rama S.</creatorcontrib><description>The tunnel field-effect transistor (TFET) is an ambipolar device that conducts current with the channel in both accumulation and inversion modes. Analytical expressions for the channel potential and current in a TFET with an n -doped channel when operating in the accumulation and inversion modes are proposed herein. The potential model is derived by solving the two-dimensional (2D) Poisson equation using the superposition principle while considering the charges present in the channel due to electron or hole accumulation along with the depletion charges. An expression for the tunneling current corresponding to the maximum tunneling probability is also derived. The tunneling current is obtained by analytically calculating the minimum tunneling length in a TFET when operating in the accumulation or inversion mode. The results of the proposed potential model is compared with technology computer-aided design (TCAD) simulations for TFET with various dimensions, revealing good agreement. The potential and current in an n -type TFET ( n TFET) obtained using the proposed models are also analyzed.</description><identifier>ISSN: 1569-8025</identifier><identifier>EISSN: 1572-8137</identifier><identifier>DOI: 10.1007/s10825-021-01683-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accumulation ; CAD ; Computer aided design ; Electric fields ; Electrical Engineering ; Electrons ; Engineering ; Field effect transistors ; Mathematical analysis ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical models ; Mechanical Engineering ; Optical and Electronic Materials ; Poisson equation ; Semiconductor devices ; Superposition (mathematics) ; Theoretical</subject><ispartof>Journal of computational electronics, 2021-06, Vol.20 (3), p.1125-1136</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-66bb195f0f7eb3cc3be1ce43571355fb37751afa9778b55891f4975a02986cb43</citedby><cites>FETCH-LOGICAL-c319t-66bb195f0f7eb3cc3be1ce43571355fb37751afa9778b55891f4975a02986cb43</cites><orcidid>0000-0001-9991-9145</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10825-021-01683-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918274934?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Ranjith, R.</creatorcontrib><creatorcontrib>Suja, K. J.</creatorcontrib><creatorcontrib>Komaragiri, Rama S.</creatorcontrib><title>An analytical model for a TFET with an n-doped channel operating in accumulation and inversion modes</title><title>Journal of computational electronics</title><addtitle>J Comput Electron</addtitle><description>The tunnel field-effect transistor (TFET) is an ambipolar device that conducts current with the channel in both accumulation and inversion modes. Analytical expressions for the channel potential and current in a TFET with an n -doped channel when operating in the accumulation and inversion modes are proposed herein. The potential model is derived by solving the two-dimensional (2D) Poisson equation using the superposition principle while considering the charges present in the channel due to electron or hole accumulation along with the depletion charges. An expression for the tunneling current corresponding to the maximum tunneling probability is also derived. The tunneling current is obtained by analytically calculating the minimum tunneling length in a TFET when operating in the accumulation or inversion mode. The results of the proposed potential model is compared with technology computer-aided design (TCAD) simulations for TFET with various dimensions, revealing good agreement. The potential and current in an n -type TFET ( n TFET) obtained using the proposed models are also analyzed.</description><subject>Accumulation</subject><subject>CAD</subject><subject>Computer aided design</subject><subject>Electric fields</subject><subject>Electrical Engineering</subject><subject>Electrons</subject><subject>Engineering</subject><subject>Field effect transistors</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Optical and Electronic Materials</subject><subject>Poisson equation</subject><subject>Semiconductor devices</subject><subject>Superposition (mathematics)</subject><subject>Theoretical</subject><issn>1569-8025</issn><issn>1572-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE9PwyAchonRxDn9Ap5IPKP8oJRyXBb_JUu8zDOhFLYuXTuh1e3bS62JN0_wkud9El6EboHeA6XyIQItmCCUAaGQF5wcz9AMhGSkAC7Px3uuSEGZuERXMe4oZZRlMEPVosWmNc2pr61p8L6rXIN9F7DB66fHNf6q-20CcEuq7uAqbLembROSQjB93W5wnQTWDvuhSbkbbVV6-3QhjmkUxmt04U0T3c3vOUfvyb18Iau359flYkUsB9WTPC9LUMJTL13JreWlA-syLiRwIXzJpRRgvFFSFqUQhQKfKSkMZarIbZnxObqbvIfQfQwu9nrXDSH9LmqmoGAyU3yk2ETZ0MUYnNeHUO9NOGmgelxTT2vqtKb-WVMfU4lPpZjgduPCn_qf1jf9_nfz</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Ranjith, R.</creator><creator>Suja, K. J.</creator><creator>Komaragiri, Rama S.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-9991-9145</orcidid></search><sort><creationdate>20210601</creationdate><title>An analytical model for a TFET with an n-doped channel operating in accumulation and inversion modes</title><author>Ranjith, R. ; Suja, K. J. ; Komaragiri, Rama S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-66bb195f0f7eb3cc3be1ce43571355fb37751afa9778b55891f4975a02986cb43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accumulation</topic><topic>CAD</topic><topic>Computer aided design</topic><topic>Electric fields</topic><topic>Electrical Engineering</topic><topic>Electrons</topic><topic>Engineering</topic><topic>Field effect transistors</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Optical and Electronic Materials</topic><topic>Poisson equation</topic><topic>Semiconductor devices</topic><topic>Superposition (mathematics)</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ranjith, R.</creatorcontrib><creatorcontrib>Suja, K. J.</creatorcontrib><creatorcontrib>Komaragiri, Rama S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Journal of computational electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ranjith, R.</au><au>Suja, K. J.</au><au>Komaragiri, Rama S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An analytical model for a TFET with an n-doped channel operating in accumulation and inversion modes</atitle><jtitle>Journal of computational electronics</jtitle><stitle>J Comput Electron</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>20</volume><issue>3</issue><spage>1125</spage><epage>1136</epage><pages>1125-1136</pages><issn>1569-8025</issn><eissn>1572-8137</eissn><abstract>The tunnel field-effect transistor (TFET) is an ambipolar device that conducts current with the channel in both accumulation and inversion modes. Analytical expressions for the channel potential and current in a TFET with an n -doped channel when operating in the accumulation and inversion modes are proposed herein. The potential model is derived by solving the two-dimensional (2D) Poisson equation using the superposition principle while considering the charges present in the channel due to electron or hole accumulation along with the depletion charges. An expression for the tunneling current corresponding to the maximum tunneling probability is also derived. The tunneling current is obtained by analytically calculating the minimum tunneling length in a TFET when operating in the accumulation or inversion mode. The results of the proposed potential model is compared with technology computer-aided design (TCAD) simulations for TFET with various dimensions, revealing good agreement. The potential and current in an n -type TFET ( n TFET) obtained using the proposed models are also analyzed.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10825-021-01683-x</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9991-9145</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1569-8025
ispartof Journal of computational electronics, 2021-06, Vol.20 (3), p.1125-1136
issn 1569-8025
1572-8137
language eng
recordid cdi_proquest_journals_2918274934
source ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Accumulation
CAD
Computer aided design
Electric fields
Electrical Engineering
Electrons
Engineering
Field effect transistors
Mathematical analysis
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematical models
Mechanical Engineering
Optical and Electronic Materials
Poisson equation
Semiconductor devices
Superposition (mathematics)
Theoretical
title An analytical model for a TFET with an n-doped channel operating in accumulation and inversion modes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A45%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20analytical%20model%20for%20a%20TFET%20with%20an%20n-doped%20channel%20operating%20in%20accumulation%20and%20inversion%20modes&rft.jtitle=Journal%20of%20computational%20electronics&rft.au=Ranjith,%20R.&rft.date=2021-06-01&rft.volume=20&rft.issue=3&rft.spage=1125&rft.epage=1136&rft.pages=1125-1136&rft.issn=1569-8025&rft.eissn=1572-8137&rft_id=info:doi/10.1007/s10825-021-01683-x&rft_dat=%3Cproquest_cross%3E2918274934%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918274934&rft_id=info:pmid/&rfr_iscdi=true