An accurate compact model to extract the important physical parameters of an experimental nanoscale short-channel SOI MOSFET

A new compact model is introduced to determine the drain current of an experimental short-channel silicon-on-insulator (SOI) metal–oxide–semiconductor field-effect transistor (MOSFET) analytically. The effective physical parameters of the experimental nanoscale SOI MOSFET were successfully extracted...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational electronics 2019-03, Vol.18 (1), p.46-52
1. Verfasser: Anvarifard, Mohammad K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 52
container_issue 1
container_start_page 46
container_title Journal of computational electronics
container_volume 18
creator Anvarifard, Mohammad K.
description A new compact model is introduced to determine the drain current of an experimental short-channel silicon-on-insulator (SOI) metal–oxide–semiconductor field-effect transistor (MOSFET) analytically. The effective physical parameters of the experimental nanoscale SOI MOSFET were successfully extracted for the first time using an efficient search algorithm named particle swarm optimization (PSO) as a link between the analytical drain model and the experimental data. Seven important parameters, viz. the drain-induced barrier lowering, subthreshold swing, additional resistance at the source terminal, carrier velocity, low-field carrier mobility, and threshold voltage, were sought using the PSO algorithm to obtain the best fitness value. The results revealed that the application of this PSO strategy achieved an excellent match between the proposed drain current model and experimental data notwithstanding the initial values of the fitting parameters. Also, the internal node capacitances of the short-channel SOI MOSFET were successfully extracted for use in compact models of its small-signal operation.
doi_str_mv 10.1007/s10825-018-1267-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918274892</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918274892</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-9845d0d6f3686556fe7d13d11cf5651c9fd2fba30fa84e09a85604df999541963</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxRdRsFY_gLeA52gmu8kmx1L8U6j0UD2HmE3clm6yJiko-OFNqeDJ0wwzv_eGeVV1DeQWCGnvEhBBGSYgMFDeYnlSTYC1FAuo29NDzyUWhLLz6iKlLSGU0AYm1ffMI23MPupskQnDqE1GQ-jsDuWA7GeOh0HuLdoMY4hZ-4zG_ittjN6hUUc92GxjQsEh7Qs_2rgZrM9l67UPqWAWpb4osem198V3vVqg59X64f7lsjpzepfs1W-dVq9lOn_Cy9XjYj5bYlMDz1iKhnWk467mgjPGnW07qDsA4xhnYKTrqHvTNXFaNJZILRgnTeeklKwByetpdXP0HWP42NuU1Tbsoy8nFZUgaNsISQsFR8rEkFK0To3lFx2_FBB1CFkdQ1YlZHUIWcmioUdNKqx_t_HP-X_RD90SgAI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918274892</pqid></control><display><type>article</type><title>An accurate compact model to extract the important physical parameters of an experimental nanoscale short-channel SOI MOSFET</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Anvarifard, Mohammad K.</creator><creatorcontrib>Anvarifard, Mohammad K.</creatorcontrib><description>A new compact model is introduced to determine the drain current of an experimental short-channel silicon-on-insulator (SOI) metal–oxide–semiconductor field-effect transistor (MOSFET) analytically. The effective physical parameters of the experimental nanoscale SOI MOSFET were successfully extracted for the first time using an efficient search algorithm named particle swarm optimization (PSO) as a link between the analytical drain model and the experimental data. Seven important parameters, viz. the drain-induced barrier lowering, subthreshold swing, additional resistance at the source terminal, carrier velocity, low-field carrier mobility, and threshold voltage, were sought using the PSO algorithm to obtain the best fitness value. The results revealed that the application of this PSO strategy achieved an excellent match between the proposed drain current model and experimental data notwithstanding the initial values of the fitting parameters. Also, the internal node capacitances of the short-channel SOI MOSFET were successfully extracted for use in compact models of its small-signal operation.</description><identifier>ISSN: 1569-8025</identifier><identifier>EISSN: 1572-8137</identifier><identifier>DOI: 10.1007/s10825-018-1267-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Carrier mobility ; Electrical Engineering ; Engineering ; Field effect transistors ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical models ; Mechanical Engineering ; Metal oxide semiconductors ; MOSFETs ; Optical and Electronic Materials ; Optimization ; Parameters ; Particle swarm optimization ; Performance evaluation ; Physical properties ; Search algorithms ; Semiconductor devices ; SOI (semiconductors) ; Theoretical ; Threshold voltage ; Transistors</subject><ispartof>Journal of computational electronics, 2019-03, Vol.18 (1), p.46-52</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-9845d0d6f3686556fe7d13d11cf5651c9fd2fba30fa84e09a85604df999541963</citedby><cites>FETCH-LOGICAL-c316t-9845d0d6f3686556fe7d13d11cf5651c9fd2fba30fa84e09a85604df999541963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10825-018-1267-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918274892?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21368,27903,27904,33723,41467,42536,43784,51298,64362,64366,72216</link.rule.ids></links><search><creatorcontrib>Anvarifard, Mohammad K.</creatorcontrib><title>An accurate compact model to extract the important physical parameters of an experimental nanoscale short-channel SOI MOSFET</title><title>Journal of computational electronics</title><addtitle>J Comput Electron</addtitle><description>A new compact model is introduced to determine the drain current of an experimental short-channel silicon-on-insulator (SOI) metal–oxide–semiconductor field-effect transistor (MOSFET) analytically. The effective physical parameters of the experimental nanoscale SOI MOSFET were successfully extracted for the first time using an efficient search algorithm named particle swarm optimization (PSO) as a link between the analytical drain model and the experimental data. Seven important parameters, viz. the drain-induced barrier lowering, subthreshold swing, additional resistance at the source terminal, carrier velocity, low-field carrier mobility, and threshold voltage, were sought using the PSO algorithm to obtain the best fitness value. The results revealed that the application of this PSO strategy achieved an excellent match between the proposed drain current model and experimental data notwithstanding the initial values of the fitting parameters. Also, the internal node capacitances of the short-channel SOI MOSFET were successfully extracted for use in compact models of its small-signal operation.</description><subject>Algorithms</subject><subject>Carrier mobility</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Field effect transistors</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Metal oxide semiconductors</subject><subject>MOSFETs</subject><subject>Optical and Electronic Materials</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Particle swarm optimization</subject><subject>Performance evaluation</subject><subject>Physical properties</subject><subject>Search algorithms</subject><subject>Semiconductor devices</subject><subject>SOI (semiconductors)</subject><subject>Theoretical</subject><subject>Threshold voltage</subject><subject>Transistors</subject><issn>1569-8025</issn><issn>1572-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE9LAzEQxRdRsFY_gLeA52gmu8kmx1L8U6j0UD2HmE3clm6yJiko-OFNqeDJ0wwzv_eGeVV1DeQWCGnvEhBBGSYgMFDeYnlSTYC1FAuo29NDzyUWhLLz6iKlLSGU0AYm1ffMI23MPupskQnDqE1GQ-jsDuWA7GeOh0HuLdoMY4hZ-4zG_ittjN6hUUc92GxjQsEh7Qs_2rgZrM9l67UPqWAWpb4osem198V3vVqg59X64f7lsjpzepfs1W-dVq9lOn_Cy9XjYj5bYlMDz1iKhnWk467mgjPGnW07qDsA4xhnYKTrqHvTNXFaNJZILRgnTeeklKwByetpdXP0HWP42NuU1Tbsoy8nFZUgaNsISQsFR8rEkFK0To3lFx2_FBB1CFkdQ1YlZHUIWcmioUdNKqx_t_HP-X_RD90SgAI</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Anvarifard, Mohammad K.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20190301</creationdate><title>An accurate compact model to extract the important physical parameters of an experimental nanoscale short-channel SOI MOSFET</title><author>Anvarifard, Mohammad K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-9845d0d6f3686556fe7d13d11cf5651c9fd2fba30fa84e09a85604df999541963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Carrier mobility</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Field effect transistors</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Metal oxide semiconductors</topic><topic>MOSFETs</topic><topic>Optical and Electronic Materials</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Particle swarm optimization</topic><topic>Performance evaluation</topic><topic>Physical properties</topic><topic>Search algorithms</topic><topic>Semiconductor devices</topic><topic>SOI (semiconductors)</topic><topic>Theoretical</topic><topic>Threshold voltage</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anvarifard, Mohammad K.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Journal of computational electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anvarifard, Mohammad K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An accurate compact model to extract the important physical parameters of an experimental nanoscale short-channel SOI MOSFET</atitle><jtitle>Journal of computational electronics</jtitle><stitle>J Comput Electron</stitle><date>2019-03-01</date><risdate>2019</risdate><volume>18</volume><issue>1</issue><spage>46</spage><epage>52</epage><pages>46-52</pages><issn>1569-8025</issn><eissn>1572-8137</eissn><abstract>A new compact model is introduced to determine the drain current of an experimental short-channel silicon-on-insulator (SOI) metal–oxide–semiconductor field-effect transistor (MOSFET) analytically. The effective physical parameters of the experimental nanoscale SOI MOSFET were successfully extracted for the first time using an efficient search algorithm named particle swarm optimization (PSO) as a link between the analytical drain model and the experimental data. Seven important parameters, viz. the drain-induced barrier lowering, subthreshold swing, additional resistance at the source terminal, carrier velocity, low-field carrier mobility, and threshold voltage, were sought using the PSO algorithm to obtain the best fitness value. The results revealed that the application of this PSO strategy achieved an excellent match between the proposed drain current model and experimental data notwithstanding the initial values of the fitting parameters. Also, the internal node capacitances of the short-channel SOI MOSFET were successfully extracted for use in compact models of its small-signal operation.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10825-018-1267-9</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1569-8025
ispartof Journal of computational electronics, 2019-03, Vol.18 (1), p.46-52
issn 1569-8025
1572-8137
language eng
recordid cdi_proquest_journals_2918274892
source ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Algorithms
Carrier mobility
Electrical Engineering
Engineering
Field effect transistors
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematical models
Mechanical Engineering
Metal oxide semiconductors
MOSFETs
Optical and Electronic Materials
Optimization
Parameters
Particle swarm optimization
Performance evaluation
Physical properties
Search algorithms
Semiconductor devices
SOI (semiconductors)
Theoretical
Threshold voltage
Transistors
title An accurate compact model to extract the important physical parameters of an experimental nanoscale short-channel SOI MOSFET
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T05%3A59%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20accurate%20compact%20model%20to%20extract%20the%20important%20physical%20parameters%20of%20an%20experimental%20nanoscale%20short-channel%20SOI%20MOSFET&rft.jtitle=Journal%20of%20computational%20electronics&rft.au=Anvarifard,%20Mohammad%20K.&rft.date=2019-03-01&rft.volume=18&rft.issue=1&rft.spage=46&rft.epage=52&rft.pages=46-52&rft.issn=1569-8025&rft.eissn=1572-8137&rft_id=info:doi/10.1007/s10825-018-1267-9&rft_dat=%3Cproquest_cross%3E2918274892%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918274892&rft_id=info:pmid/&rfr_iscdi=true